K. Kim, Emmanuel Henrich, C. Im, Moon-Cheol Kim, Sung-Jin Kim, Yuqing Li, Sheng Liu, S. Yoo, L. Zheng, Qian Zhou
{"title":"Distributed computing based streaming and play of music ensemble realized through TMO programming","authors":"K. Kim, Emmanuel Henrich, C. Im, Moon-Cheol Kim, Sung-Jin Kim, Yuqing Li, Sheng Liu, S. Yoo, L. Zheng, Qian Zhou","doi":"10.1109/WORDS.2005.28","DOIUrl":null,"url":null,"abstract":"We present a new class of multimedia applications where the exploitation of the principle of global-time-based coordination of distributed actions (TCoDA) is compelling. In these applications, multiple small-footprint PCs, each equipped with its own speakers, act as instrument players or singers forming an ensemble. Each player PC obtains its piece of the musical audio data over an Ethernet network from a central server containing all necessary audio files. An important requirement is thus to make multiple specialized players, e.g., violin player, cello player, piano player, etc., perform globally synchronous play of their responsible pieces of the music. Moreover, to enable fast start of the requested music play, the musical data are streamed from the server to each player in a pipelined fashion so that while each player is playing one part of the music, the next part may be arriving over the network. Efficient implementation techniques based on the TMO programming scheme are then presented. This digital music ensemble application turns out to be an interesting cost-effective means of evaluating the QoS of the middleware supporting TCoDA. A prototype implementation of a digital music ensemble system was relatively easily realized by use of the TMO programming scheme.","PeriodicalId":335355,"journal":{"name":"10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORDS.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present a new class of multimedia applications where the exploitation of the principle of global-time-based coordination of distributed actions (TCoDA) is compelling. In these applications, multiple small-footprint PCs, each equipped with its own speakers, act as instrument players or singers forming an ensemble. Each player PC obtains its piece of the musical audio data over an Ethernet network from a central server containing all necessary audio files. An important requirement is thus to make multiple specialized players, e.g., violin player, cello player, piano player, etc., perform globally synchronous play of their responsible pieces of the music. Moreover, to enable fast start of the requested music play, the musical data are streamed from the server to each player in a pipelined fashion so that while each player is playing one part of the music, the next part may be arriving over the network. Efficient implementation techniques based on the TMO programming scheme are then presented. This digital music ensemble application turns out to be an interesting cost-effective means of evaluating the QoS of the middleware supporting TCoDA. A prototype implementation of a digital music ensemble system was relatively easily realized by use of the TMO programming scheme.