Web Page Harvesting for Automatized Large-scale Digital Images Anomaly Detection

M. Kowalczyk, Agnieszka Malanowska, W. Mazurczyk, Krzysztof Cabaj
{"title":"Web Page Harvesting for Automatized Large-scale Digital Images Anomaly Detection","authors":"M. Kowalczyk, Agnieszka Malanowska, W. Mazurczyk, Krzysztof Cabaj","doi":"10.1145/3538969.3544471","DOIUrl":null,"url":null,"abstract":"Currently, digital media content is increasingly being used by cybercriminals for nefarious purposes. Such objects can be used, e.g., to covertly transfer malicious code to the infected host or to exfiltrate sensitive information from the secured perimeter to the attacker’s server. In this paper, we present the design and deployment of a web page harvesting platform that allows performing various types of large-scale analyses, including metadata inspection, detection of hidden data, or evaluation of compliance with the graphical standard. The platform architecture has a distributed, flexible, and modular form, making it easily extendable and efficient. In this article, we also include initial experimental results of the analyzes carried out on the content of 1,000 of the most popular websites.","PeriodicalId":306813,"journal":{"name":"Proceedings of the 17th International Conference on Availability, Reliability and Security","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3538969.3544471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, digital media content is increasingly being used by cybercriminals for nefarious purposes. Such objects can be used, e.g., to covertly transfer malicious code to the infected host or to exfiltrate sensitive information from the secured perimeter to the attacker’s server. In this paper, we present the design and deployment of a web page harvesting platform that allows performing various types of large-scale analyses, including metadata inspection, detection of hidden data, or evaluation of compliance with the graphical standard. The platform architecture has a distributed, flexible, and modular form, making it easily extendable and efficient. In this article, we also include initial experimental results of the analyzes carried out on the content of 1,000 of the most popular websites.
基于网页采集的大规模数字图像异常自动检测
目前,数字媒体内容越来越多地被网络罪犯用于邪恶目的。例如,可以使用这些对象将恶意代码秘密地传输到受感染的主机,或将敏感信息从安全边界泄露到攻击者的服务器。在本文中,我们介绍了一个网页收集平台的设计和部署,该平台允许执行各种类型的大规模分析,包括元数据检查,隐藏数据检测或评估是否符合图形标准。平台架构具有分布式、灵活和模块化的形式,使其易于扩展和高效。在本文中,我们还包含了对1000个最受欢迎的网站内容进行分析的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信