False Positive Intent Detection Framework for Chatbot Annotation

L. Lim, Samarth Agarwal, Xuejie Zhang, John Jianan Lu
{"title":"False Positive Intent Detection Framework for Chatbot Annotation","authors":"L. Lim, Samarth Agarwal, Xuejie Zhang, John Jianan Lu","doi":"10.1145/3582768.3582798","DOIUrl":null,"url":null,"abstract":"For chatbots answering thousands of user queries daily, it requires huge annotation efforts or explicit signals from users to identify incorrect chatbot predictions. Identification of such False Positives is key to improving chatbot accuracy and is a challenging problem due to the high cost and limited explicit signals from users. In this paper, we present a framework for automatically detecting False Positive intents in an employee chatbot through implicit feedback by capturing specific user behavior using techniques such as detection of repeated queries and leveraging on active learning sampling strategies to find cases where the chatbot might have provided an incorrect response. Using this approach within the bank, annotators can prioritize their efforts and detect False Positive intent approximately three times better than manual screening of random chatbot dialogues. This framework can be reused across different chatbot applications.","PeriodicalId":315721,"journal":{"name":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582768.3582798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For chatbots answering thousands of user queries daily, it requires huge annotation efforts or explicit signals from users to identify incorrect chatbot predictions. Identification of such False Positives is key to improving chatbot accuracy and is a challenging problem due to the high cost and limited explicit signals from users. In this paper, we present a framework for automatically detecting False Positive intents in an employee chatbot through implicit feedback by capturing specific user behavior using techniques such as detection of repeated queries and leveraging on active learning sampling strategies to find cases where the chatbot might have provided an incorrect response. Using this approach within the bank, annotators can prioritize their efforts and detect False Positive intent approximately three times better than manual screening of random chatbot dialogues. This framework can be reused across different chatbot applications.
聊天机器人标注误报意图检测框架
对于每天回答数千个用户查询的聊天机器人来说,它需要大量的注释工作或来自用户的明确信号来识别不正确的聊天机器人预测。这种误报的识别是提高聊天机器人准确性的关键,由于成本高和用户的明确信号有限,这是一个具有挑战性的问题。在本文中,我们提出了一个框架,通过使用诸如检测重复查询和利用主动学习采样策略等技术捕获特定用户行为,通过隐式反馈自动检测员工聊天机器人中的假阳性意图,以发现聊天机器人可能提供错误响应的情况。在银行内部使用这种方法,注释者可以优先考虑他们的努力,并且检测误报意图比手动筛选随机聊天机器人对话好大约三倍。这个框架可以跨不同的聊天机器人应用程序重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信