Nonlinear spatiotemporal channel gain map tracking in mobile cooperative networks

Dionysios S. Kalogerias, A. Petropulu
{"title":"Nonlinear spatiotemporal channel gain map tracking in mobile cooperative networks","authors":"Dionysios S. Kalogerias, A. Petropulu","doi":"10.1109/SPAWC.2015.7227120","DOIUrl":null,"url":null,"abstract":"We propose a nonlinear filtering framework for channel state tracking and spatiotemporal channel gain prediction in mobile wireless sensor networks, in a Bayesian setting. Under common assumptions, the wireless channel constitutes an observable (by the sensors/network nodes), spatiotemporal, conditionally Gaussian stochastic process, which is statistically dependent on a set of hidden channel parameters, called the channel state. The channel state evolves in time according to a known, non Gaussian Markov stochastic kernel. Advocating the use of grid based approximate filters as an effective and robust means for recursive tracking of the channel state, we propose a sequential spatiotemporal predictor for tracking the respective channel gain map, for each sensor in the network. We also show that both estimators (state and gain map trackers) converge towards the true respective Minimum Mean Squared Error (MMSE) optimal estimators, in a common, relatively strong sense. Numerical simulations corroborate the practical effectiveness of the proposed approach.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a nonlinear filtering framework for channel state tracking and spatiotemporal channel gain prediction in mobile wireless sensor networks, in a Bayesian setting. Under common assumptions, the wireless channel constitutes an observable (by the sensors/network nodes), spatiotemporal, conditionally Gaussian stochastic process, which is statistically dependent on a set of hidden channel parameters, called the channel state. The channel state evolves in time according to a known, non Gaussian Markov stochastic kernel. Advocating the use of grid based approximate filters as an effective and robust means for recursive tracking of the channel state, we propose a sequential spatiotemporal predictor for tracking the respective channel gain map, for each sensor in the network. We also show that both estimators (state and gain map trackers) converge towards the true respective Minimum Mean Squared Error (MMSE) optimal estimators, in a common, relatively strong sense. Numerical simulations corroborate the practical effectiveness of the proposed approach.
移动合作网络中非线性时空信道增益图跟踪
我们提出了一个非线性滤波框架,用于移动无线传感器网络中信道状态跟踪和时空信道增益预测,在贝叶斯设置下。在通常的假设下,无线信道构成一个可观察的(由传感器/网络节点)、时空的、有条件的高斯随机过程,该过程在统计上依赖于一组被称为信道状态的隐藏信道参数。信道状态根据已知的非高斯马尔可夫随机核随时间演化。提倡使用基于网格的近似滤波器作为递归跟踪信道状态的有效和鲁棒手段,我们提出了一个序列时空预测器,用于跟踪网络中每个传感器的各自信道增益映射。我们还表明,两个估计器(状态和增益映射跟踪器)收敛于真正的各自最小均方误差(MMSE)最优估计器,在一个共同的,相对较强的意义上。数值模拟验证了该方法的实际有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信