gpuMF: a framework for parallel hybrid metaheuristics on GPU with application to the minimisation of harmonics in multilevel inverters

Vincent Roberge, M. Tarbouchi, F. Okou
{"title":"gpuMF: a framework for parallel hybrid metaheuristics on GPU with application to the minimisation of harmonics in multilevel inverters","authors":"Vincent Roberge, M. Tarbouchi, F. Okou","doi":"10.1504/ijpse.2015.071426","DOIUrl":null,"url":null,"abstract":"Metaheuristics are non-deterministic optimisation algorithms used to solve complex problems for which classic approaches are unsuitable or unable to generate satisfying solutions in a reasonable time. Despite their effectiveness, metaheuristics require considerable computational power. Multiple efforts have been made on the development of parallel metaheuristics on graphics processing units (GPUs). Based on a massively parallel architecture, the GPU offers remarkable computing power and can provide significant speedup. However, there currently exists no software project that unites these research initiatives into a comprehensive and reusable tool. To address this shortcoming, we developed gpuMF, a framework for parallel hybrid metaheuristics on GPUs. GPU metaheuristic framework (gpuMF) exploits the intrinsic parallelism found in metaheuristics and fully utilises the massively parallel architecture of GPUs. To demonstrate the effectiveness of our framework, we use gpuMF to minimise the harmonics of multilevel inverters while providing a speedup of 276x.","PeriodicalId":360947,"journal":{"name":"International Journal of Process Systems Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Process Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpse.2015.071426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Metaheuristics are non-deterministic optimisation algorithms used to solve complex problems for which classic approaches are unsuitable or unable to generate satisfying solutions in a reasonable time. Despite their effectiveness, metaheuristics require considerable computational power. Multiple efforts have been made on the development of parallel metaheuristics on graphics processing units (GPUs). Based on a massively parallel architecture, the GPU offers remarkable computing power and can provide significant speedup. However, there currently exists no software project that unites these research initiatives into a comprehensive and reusable tool. To address this shortcoming, we developed gpuMF, a framework for parallel hybrid metaheuristics on GPUs. GPU metaheuristic framework (gpuMF) exploits the intrinsic parallelism found in metaheuristics and fully utilises the massively parallel architecture of GPUs. To demonstrate the effectiveness of our framework, we use gpuMF to minimise the harmonics of multilevel inverters while providing a speedup of 276x.
gpuMF:基于GPU的并行混合元启发式框架,应用于多电平逆变器的谐波最小化
元启发式算法是一种非确定性优化算法,用于解决经典方法不适合或无法在合理时间内生成满意解的复杂问题。尽管它们很有效,但元启发式需要相当大的计算能力。在图形处理单元(gpu)上开发并行元启发式算法已经做了很多努力。基于大规模并行架构,GPU提供了卓越的计算能力,并可以提供显著的加速。然而,目前还没有一个软件项目能够将这些研究活动整合成一个全面的、可重用的工具。为了解决这个缺点,我们开发了gpuMF,一个在gpu上并行混合元启发式的框架。GPU元启发式框架(gpuMF)充分利用了元启发式算法固有的并行性,充分利用了GPU的大规模并行架构。为了证明我们的框架的有效性,我们使用gpuMF来最小化多电平逆变器的谐波,同时提供276倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信