Co-Optimizing Sensing and Deep Machine Learning in Automotive Cyber-Physical Systems

Joydeep Dey, S. Pasricha
{"title":"Co-Optimizing Sensing and Deep Machine Learning in Automotive Cyber-Physical Systems","authors":"Joydeep Dey, S. Pasricha","doi":"10.1109/DSD57027.2022.00049","DOIUrl":null,"url":null,"abstract":"Accurate perception of the environment is critical to achieving safety and performance goals in emerging semi-autonomous vehicles. Building a perception architecture to support autonomy goals in vehicles requires solving many complex problems related to sensor selection and placement, sensor fusion, and machine leaning driven object detection. In this paper, we present a framework for co-optimizing sensing and machine learning to meet autonomy goals in emerging automotive cyber-physical systems. Experimental results that target level 2 autonomy goals for the Audi-TT and BMW-Minicooper vehicles demonstrate how our framework can intelligently traverse the massive design space to find robust, vehicle-specific perception architecture solutions.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate perception of the environment is critical to achieving safety and performance goals in emerging semi-autonomous vehicles. Building a perception architecture to support autonomy goals in vehicles requires solving many complex problems related to sensor selection and placement, sensor fusion, and machine leaning driven object detection. In this paper, we present a framework for co-optimizing sensing and machine learning to meet autonomy goals in emerging automotive cyber-physical systems. Experimental results that target level 2 autonomy goals for the Audi-TT and BMW-Minicooper vehicles demonstrate how our framework can intelligently traverse the massive design space to find robust, vehicle-specific perception architecture solutions.
汽车信息物理系统中的协同优化传感和深度机器学习
在新兴的半自动驾驶汽车中,对环境的准确感知对于实现安全和性能目标至关重要。构建一个支持车辆自动驾驶目标的感知架构需要解决许多与传感器选择和放置、传感器融合和机器学习驱动的目标检测相关的复杂问题。在本文中,我们提出了一个框架,用于共同优化传感和机器学习,以满足新兴汽车网络物理系统的自主目标。Audi-TT和BMW-Minicooper汽车的2级自动驾驶目标实验结果表明,我们的框架可以智能地穿越巨大的设计空间,找到强大的、特定于车辆的感知架构解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信