Geometry and Automorphisms of Non-Kähler Holomorphic Symplectic Manifolds

F. Bogomolov, N. Kurnosov, A. Kuznetsova, E. Yasinsky
{"title":"Geometry and Automorphisms of Non-Kähler Holomorphic Symplectic Manifolds","authors":"F. Bogomolov, N. Kurnosov, A. Kuznetsova, E. Yasinsky","doi":"10.1093/IMRN/RNAB043","DOIUrl":null,"url":null,"abstract":"We consider the only one known class of non-Kahler irreducible holomorphic symplectic manifolds, described in the works of D. Guan and the first author. Any such manifold $Q$ of dimension $2n-2$ is obtained as a finite degree $n^2$ cover of some non-Kahler manifold $W_F$ which we call the base of $Q$. We show that the algebraic reduction of $Q$ and its base is the projective space of dimension $n-1$. Besides, we give a partial classification of submanifolds in $Q$, describe the degeneracy locus of its algebraic reduction, and prove that the automorphism group of $Q$ satisfies the Jordan property.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the only one known class of non-Kahler irreducible holomorphic symplectic manifolds, described in the works of D. Guan and the first author. Any such manifold $Q$ of dimension $2n-2$ is obtained as a finite degree $n^2$ cover of some non-Kahler manifold $W_F$ which we call the base of $Q$. We show that the algebraic reduction of $Q$ and its base is the projective space of dimension $n-1$. Besides, we give a partial classification of submanifolds in $Q$, describe the degeneracy locus of its algebraic reduction, and prove that the automorphism group of $Q$ satisfies the Jordan property.
Non-Kähler全纯辛流形的几何与自同构
我们考虑在D. Guan和第一作者的著作中描述的唯一一类已知的非kahler不可约全纯辛流形。任何这样的维数为$2n-2$的流形$Q$都可以作为一个有限次的$n^2$覆盖在某个非kahler流形$W_F$上,我们称之为$Q$的基。证明了$Q$及其基的代数约简是维数$n-1$的射影空间。此外,我们给出了$Q$中子流形的部分分类,描述了其代数约简的退化轨迹,并证明了$Q$的自同构群满足Jordan性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信