F. Bogomolov, N. Kurnosov, A. Kuznetsova, E. Yasinsky
{"title":"Geometry and Automorphisms of Non-Kähler Holomorphic Symplectic Manifolds","authors":"F. Bogomolov, N. Kurnosov, A. Kuznetsova, E. Yasinsky","doi":"10.1093/IMRN/RNAB043","DOIUrl":null,"url":null,"abstract":"We consider the only one known class of non-Kahler irreducible holomorphic symplectic manifolds, described in the works of D. Guan and the first author. Any such manifold $Q$ of dimension $2n-2$ is obtained as a finite degree $n^2$ cover of some non-Kahler manifold $W_F$ which we call the base of $Q$. We show that the algebraic reduction of $Q$ and its base is the projective space of dimension $n-1$. Besides, we give a partial classification of submanifolds in $Q$, describe the degeneracy locus of its algebraic reduction, and prove that the automorphism group of $Q$ satisfies the Jordan property.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the only one known class of non-Kahler irreducible holomorphic symplectic manifolds, described in the works of D. Guan and the first author. Any such manifold $Q$ of dimension $2n-2$ is obtained as a finite degree $n^2$ cover of some non-Kahler manifold $W_F$ which we call the base of $Q$. We show that the algebraic reduction of $Q$ and its base is the projective space of dimension $n-1$. Besides, we give a partial classification of submanifolds in $Q$, describe the degeneracy locus of its algebraic reduction, and prove that the automorphism group of $Q$ satisfies the Jordan property.