Automated detection of soldering splashes using YOLOv5 algorithm

P. Klčo, D. Koniar, L. Hargaš, M. Paskala
{"title":"Automated detection of soldering splashes using YOLOv5 algorithm","authors":"P. Klčo, D. Koniar, L. Hargaš, M. Paskala","doi":"10.1109/AE54730.2022.9920084","DOIUrl":null,"url":null,"abstract":"This paper deals with automated visual inspection of electronic boards in serial manufacturing of power electronics devices. Soldering splashes generated in the relevant phases of manufacturing can decrease the quality, parameters and lifetime of hybrid power semiconductor modules. Soldering splashes can occur in restricted area of electronic board and must be removed. Automated inspection is provided using neural network YOLO trained on image dataset of electronic boards acquired by authors in SEMIKRON Slovakia company. Implemented method will lead to higher reliability of manufacturing process.","PeriodicalId":113076,"journal":{"name":"2022 International Conference on Applied Electronics (AE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE54730.2022.9920084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with automated visual inspection of electronic boards in serial manufacturing of power electronics devices. Soldering splashes generated in the relevant phases of manufacturing can decrease the quality, parameters and lifetime of hybrid power semiconductor modules. Soldering splashes can occur in restricted area of electronic board and must be removed. Automated inspection is provided using neural network YOLO trained on image dataset of electronic boards acquired by authors in SEMIKRON Slovakia company. Implemented method will lead to higher reliability of manufacturing process.
使用YOLOv5算法自动检测焊接飞溅
本文论述了电力电子设备串行生产中电子电路板的自动目视检测。在制造的相关阶段产生的焊接飞溅会降低混合功率半导体模块的质量、参数和寿命。焊锡飞溅可能发生在电子电路板的限制区域,必须清除。使用神经网络YOLO对作者在赛米控斯洛伐克公司获得的电子板图像数据集进行训练,提供自动检测。实现的方法将提高制造过程的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信