Impact of Feature Selection on Support Vector Machine Using Microarray Gene Expression Data

C. Wahid, A. Ali, K. Tickle
{"title":"Impact of Feature Selection on Support Vector Machine Using Microarray Gene Expression Data","authors":"C. Wahid, A. Ali, K. Tickle","doi":"10.1109/ICMV.2009.46","DOIUrl":null,"url":null,"abstract":"Recent researches have investigated the impact of feature selection methods on the performance of support vector machine (SVM) and claimed that no feature selection methods improve it in high dimension. However, they have based this argument on their experiments with simulated data. We have taken this claim as a research issue and investigated different feature selection methods on the real time micro array gene expression data. Our research outcome indicates that feature selection methods do have a positive impact on the performance of SVM in classifying micro array gene expression data.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent researches have investigated the impact of feature selection methods on the performance of support vector machine (SVM) and claimed that no feature selection methods improve it in high dimension. However, they have based this argument on their experiments with simulated data. We have taken this claim as a research issue and investigated different feature selection methods on the real time micro array gene expression data. Our research outcome indicates that feature selection methods do have a positive impact on the performance of SVM in classifying micro array gene expression data.
基于微阵列基因表达数据的特征选择对支持向量机的影响
最近的研究研究了特征选择方法对支持向量机(SVM)性能的影响,认为没有一种特征选择方法能在高维情况下改善支持向量机(SVM)的性能。然而,他们的论点是基于他们的模拟数据实验。我们将这一主张作为研究课题,对实时微阵列基因表达数据的不同特征选择方法进行了研究。我们的研究结果表明,特征选择方法确实对支持向量机在微阵列基因表达数据分类中的性能有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信