{"title":"A Modified of DTC Control Applied to Novel FI- PMA-SynRM for Torque Ripple Reduction","authors":"Thanh Anh Huynh, N. Le, M. Hsieh, Duc-Kien Ngo","doi":"10.1109/IFEEC47410.2019.9015200","DOIUrl":null,"url":null,"abstract":"In this paper, an improved direct torque control (DTC) for novel flux intensifying permanent magnet assisted synchronous reluctance motor (FI-PMa-SynRM) is developed to reduce the torque- and flux-ripple. The salient feature of FI- PMa-SynRM is the ability to enhance the output torque and prevent PM from demagnetization although the PM amount utilized is minimum. To reach such feature, the maximum torque per ampere (MTPA)-based DTC control should be applied to FI-PMa-SynRM firstly, and the torque ripple is also investigated. T o reduce the torque ripple, the effect of stator flux errors is eliminated in the calculations of amplitude of voltage command, which is composited in the space vector modulation (SVM). The proposed DTC is comparatively investigated with the existing DTC in both computer simulation and experimental validation. The results validate that the modified DTC model achieves better torque ripple reduction and that on the other hand, dynamic response of modified DTC is lower than that of the conventional DTC.","PeriodicalId":230939,"journal":{"name":"2019 IEEE 4th International Future Energy Electronics Conference (IFEEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Future Energy Electronics Conference (IFEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFEEC47410.2019.9015200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, an improved direct torque control (DTC) for novel flux intensifying permanent magnet assisted synchronous reluctance motor (FI-PMa-SynRM) is developed to reduce the torque- and flux-ripple. The salient feature of FI- PMa-SynRM is the ability to enhance the output torque and prevent PM from demagnetization although the PM amount utilized is minimum. To reach such feature, the maximum torque per ampere (MTPA)-based DTC control should be applied to FI-PMa-SynRM firstly, and the torque ripple is also investigated. T o reduce the torque ripple, the effect of stator flux errors is eliminated in the calculations of amplitude of voltage command, which is composited in the space vector modulation (SVM). The proposed DTC is comparatively investigated with the existing DTC in both computer simulation and experimental validation. The results validate that the modified DTC model achieves better torque ripple reduction and that on the other hand, dynamic response of modified DTC is lower than that of the conventional DTC.