{"title":"Importance of resilient pastures for New Zealand’s agricultural soil carbon stocks","authors":"A. Wall, J. Goodrich, L. Schipper","doi":"10.33584/rps.17.2021.3455","DOIUrl":null,"url":null,"abstract":"New Zealand’s agricultural pastures contain significant soil carbon (C) stocks that are susceptible to change when impacted by management and natural processes (e.g., climate). Inputs of C to these pastoral soils is through photosynthetic uptake of atmospheric CO2 either on-site or elsewhere. Changes in soil C stocks are in response to the management of the system that alters the input-output balance. Increasing the resilience of pastures to climatic events such as hot and dry summers or cool and wet winters can increase inputs of C to the soil while sustaining above-ground production and so provide an opportunity for C sequestration. Furthermore, increased pasture for grazing can reduce the need for management practices identified as detrimental for soil C stocks such as irrigation or the production of cropped supplemental feed. A reduction in the need for renewal and its associated soil C losses, and the establishment of a more diverse sward, especially if deeper-rooting species are included, has the potential for increasing soil C stocks provided the diversity can be maintained. From a soil C perspective, a resilient pasture maximises CO2 uptake to ensure adequate above- and below-ground inputs to maintain or increase soil C stocks and minimise the need for management activities detrimental to soil C.","PeriodicalId":407057,"journal":{"name":"NZGA: Research and Practice Series","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NZGA: Research and Practice Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33584/rps.17.2021.3455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
New Zealand’s agricultural pastures contain significant soil carbon (C) stocks that are susceptible to change when impacted by management and natural processes (e.g., climate). Inputs of C to these pastoral soils is through photosynthetic uptake of atmospheric CO2 either on-site or elsewhere. Changes in soil C stocks are in response to the management of the system that alters the input-output balance. Increasing the resilience of pastures to climatic events such as hot and dry summers or cool and wet winters can increase inputs of C to the soil while sustaining above-ground production and so provide an opportunity for C sequestration. Furthermore, increased pasture for grazing can reduce the need for management practices identified as detrimental for soil C stocks such as irrigation or the production of cropped supplemental feed. A reduction in the need for renewal and its associated soil C losses, and the establishment of a more diverse sward, especially if deeper-rooting species are included, has the potential for increasing soil C stocks provided the diversity can be maintained. From a soil C perspective, a resilient pasture maximises CO2 uptake to ensure adequate above- and below-ground inputs to maintain or increase soil C stocks and minimise the need for management activities detrimental to soil C.