Coupled tensor factorization models for polyphonic music transcription

Umut Simsekli, Y. K. Yilmaz, A. Cemgil
{"title":"Coupled tensor factorization models for polyphonic music transcription","authors":"Umut Simsekli, Y. K. Yilmaz, A. Cemgil","doi":"10.1109/SIU.2012.6204699","DOIUrl":null,"url":null,"abstract":"Generalized Coupled Tensor Factorization (GCTF) is a recently proposed algorithmic framework for simultaneously estimating tensor factorization models where several tensors can share a set of latent factors. This paper presents two models in this framework for transcribing polyphonic piano pieces. The first model is based on Non-negative Matrix Factorization where the coupling provides the spectral information to the model. As an extension to the first model, the second model incorporates temporal and harmonic information by taking a rough, incomplete transciption of the piece as input. Incorporating harmonic knowledge improves the transcription quality as the the experimental results show that we get around 23 % F-measure improvement on real piano data.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generalized Coupled Tensor Factorization (GCTF) is a recently proposed algorithmic framework for simultaneously estimating tensor factorization models where several tensors can share a set of latent factors. This paper presents two models in this framework for transcribing polyphonic piano pieces. The first model is based on Non-negative Matrix Factorization where the coupling provides the spectral information to the model. As an extension to the first model, the second model incorporates temporal and harmonic information by taking a rough, incomplete transciption of the piece as input. Incorporating harmonic knowledge improves the transcription quality as the the experimental results show that we get around 23 % F-measure improvement on real piano data.
复调音乐转录的耦合张量分解模型
广义耦合张量分解(GCTF)是最近提出的一种用于同时估计张量分解模型的算法框架,其中多个张量可以共享一组潜在因子。本文在此框架下提出了两种复调钢琴曲的抄写模型。第一个模型基于非负矩阵分解,其中耦合为模型提供了谱信息。作为第一个模型的扩展,第二个模型通过将片段的粗糙的、不完整的接收作为输入,结合了时间和谐波信息。结合谐波知识提高了转录质量,实验结果表明,我们在真实钢琴数据上得到了约23%的F-measure改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信