{"title":"Coupled tensor factorization models for polyphonic music transcription","authors":"Umut Simsekli, Y. K. Yilmaz, A. Cemgil","doi":"10.1109/SIU.2012.6204699","DOIUrl":null,"url":null,"abstract":"Generalized Coupled Tensor Factorization (GCTF) is a recently proposed algorithmic framework for simultaneously estimating tensor factorization models where several tensors can share a set of latent factors. This paper presents two models in this framework for transcribing polyphonic piano pieces. The first model is based on Non-negative Matrix Factorization where the coupling provides the spectral information to the model. As an extension to the first model, the second model incorporates temporal and harmonic information by taking a rough, incomplete transciption of the piece as input. Incorporating harmonic knowledge improves the transcription quality as the the experimental results show that we get around 23 % F-measure improvement on real piano data.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Generalized Coupled Tensor Factorization (GCTF) is a recently proposed algorithmic framework for simultaneously estimating tensor factorization models where several tensors can share a set of latent factors. This paper presents two models in this framework for transcribing polyphonic piano pieces. The first model is based on Non-negative Matrix Factorization where the coupling provides the spectral information to the model. As an extension to the first model, the second model incorporates temporal and harmonic information by taking a rough, incomplete transciption of the piece as input. Incorporating harmonic knowledge improves the transcription quality as the the experimental results show that we get around 23 % F-measure improvement on real piano data.