Inverse Hessian estimation in least-squares migration using chains of operators

T. Tangkijwanichakul, Sergey Fomel
{"title":"Inverse Hessian estimation in least-squares migration using chains of operators","authors":"T. Tangkijwanichakul, Sergey Fomel","doi":"10.3997/2214-4609.202112700","DOIUrl":null,"url":null,"abstract":"Summary We approximate the inverse Hessian operator by a chain of weights in time/space and frequency domains. Tests on synthetic data show that this approach provides an effective approximation while having the minimal cost of forward and inverse FFTs (Fast FourierTransforms). The method can be applied either for compensating migrated images or in the form of a preconditioner inside iterative least-squares reverse-time migration (LSRTM). As demonstrated by experiments with synthetic data, the latter significantly accelerates the convergence of LSRTM and achieves high-quality imaging results in fewer iterations.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We approximate the inverse Hessian operator by a chain of weights in time/space and frequency domains. Tests on synthetic data show that this approach provides an effective approximation while having the minimal cost of forward and inverse FFTs (Fast FourierTransforms). The method can be applied either for compensating migrated images or in the form of a preconditioner inside iterative least-squares reverse-time migration (LSRTM). As demonstrated by experiments with synthetic data, the latter significantly accelerates the convergence of LSRTM and achieves high-quality imaging results in fewer iterations.
基于算子链的最小二乘迁移逆Hessian估计
我们在时间/空间和频域中用权链逼近逆Hessian算子。对合成数据的测试表明,该方法提供了有效的近似,同时具有最小的正向和反向fft(快速傅里叶变换)成本。该方法既可以用于补偿偏移图像,也可以在迭代最小二乘逆时偏移(LSRTM)中作为前置条件。合成数据实验表明,后者显著加快了LSRTM的收敛速度,在更少的迭代中获得了高质量的成像结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信