An Enhanced Approach for Detecting Alzheimer’s Disease

Sanjay V, S. P.
{"title":"An Enhanced Approach for Detecting Alzheimer’s Disease","authors":"Sanjay V, S. P.","doi":"10.1109/STCR55312.2022.10009274","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease affects most of the elderly in today's world. It directly affects the neurotransmitters and leads to dementia. MRI images can spot brain irregularities related to mild cognitive damage. It can be useful for predicting Alzheimer’s disease, though it is a big challenge. In this research, a novel technique is proposed to find to detect Alzheimer’s disease using Adaboost classifier with a hybrid PSO algorithm. Initially, MRI image features are extracted, and the best features are identified by the curvelet transform and Principal Component Analysis (PCA). Adaboost proposed methods yield greater accuracy than the existing systems for analyzing MRI images and give excellent classification accuracy. To evaluate the proposed method three methods metrics namely accuracy, specificity, and sensitivity are used. Based on the results the proposed methods yield greater accuracy than the existing systems.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease affects most of the elderly in today's world. It directly affects the neurotransmitters and leads to dementia. MRI images can spot brain irregularities related to mild cognitive damage. It can be useful for predicting Alzheimer’s disease, though it is a big challenge. In this research, a novel technique is proposed to find to detect Alzheimer’s disease using Adaboost classifier with a hybrid PSO algorithm. Initially, MRI image features are extracted, and the best features are identified by the curvelet transform and Principal Component Analysis (PCA). Adaboost proposed methods yield greater accuracy than the existing systems for analyzing MRI images and give excellent classification accuracy. To evaluate the proposed method three methods metrics namely accuracy, specificity, and sensitivity are used. Based on the results the proposed methods yield greater accuracy than the existing systems.
一种检测阿尔茨海默病的改进方法
阿尔茨海默病影响着当今世界上大多数老年人。它直接影响神经递质,导致痴呆。核磁共振成像可以发现与轻度认知损伤相关的大脑异常。它可以用于预测阿尔茨海默氏症,尽管这是一个很大的挑战。本研究提出了一种基于混合粒子群算法的Adaboost分类器检测阿尔茨海默病的新方法。首先,提取MRI图像的特征,并通过曲线变换和主成分分析(PCA)识别出最佳特征。Adaboost提出的方法比现有的分析MRI图像的系统产生更高的精度,并提供出色的分类精度。为了评估所提出的方法,使用了三种方法,即准确性、特异性和敏感性。结果表明,所提出的方法比现有的系统具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信