Some constructions on ω-groupoids

Thorsten Altenkirch, Nuo Li, Ondrej Rypacek
{"title":"Some constructions on ω-groupoids","authors":"Thorsten Altenkirch, Nuo Li, Ondrej Rypacek","doi":"10.1145/2631172.2631176","DOIUrl":null,"url":null,"abstract":"Weak ω-groupoids are the higher dimensional generalisation of setoids and are an essential ingredient of the constructive semantics of Homotopy Type Theory [13]. Following up on our previous formalisation [3] and Brunerie's notes [6], we present a new formalisation of the syntax of weak ω-groupoids in Agda using heterogeneous equality. We show how to recover basic constructions on ω-groupoids using suspension and replacement. In particular we show that any type forms a groupoid and we outline how to derive higher dimensional composition. We present a possible semantics using globular sets and discuss the issues which arise when using globular types instead.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631172.2631176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Weak ω-groupoids are the higher dimensional generalisation of setoids and are an essential ingredient of the constructive semantics of Homotopy Type Theory [13]. Following up on our previous formalisation [3] and Brunerie's notes [6], we present a new formalisation of the syntax of weak ω-groupoids in Agda using heterogeneous equality. We show how to recover basic constructions on ω-groupoids using suspension and replacement. In particular we show that any type forms a groupoid and we outline how to derive higher dimensional composition. We present a possible semantics using globular sets and discuss the issues which arise when using globular types instead.
ω-群类群上的一些构造
弱ω-群拟是集拟的高维推广,是同伦型理论构造语义的重要组成部分[13]。在我们之前的形式化[3]和Brunerie的笔记[6]的基础上,我们提出了Agda中使用异构相等的弱ω-群的语法的一种新的形式化。我们展示了如何使用悬架和替换来恢复ω-群上的基本结构。特别地,我们证明了任何类型都可以形成群形,并概述了如何推导高维组合。我们提出了一种使用全局集合的可能语义,并讨论了当使用全局类型时出现的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信