DNN-VolVis: Interactive Volume Visualization Supported by Deep Neural Network

Fan Hong, Can Liu, Xiaoru Yuan
{"title":"DNN-VolVis: Interactive Volume Visualization Supported by Deep Neural Network","authors":"Fan Hong, Can Liu, Xiaoru Yuan","doi":"10.1109/PacificVis.2019.00041","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel approach of volume visualization without explicit traditional rendering pipeline. In our proposed method, volumetric images can be interactively ‘reversed’ given the volumetric data and a static volume rendered image under the desired rendering effect. Our pipeline enables 3D-navigation on it for exploring the given volumetric data without explicit transfer function. In our approach, deep neural networks, combined usage of Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNN) are employed to synthesize high-resolution and perceptually authentic images directly, inheriting the desired transfer function and viewing parameter implicitly given by the input images respectively.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this work, we propose a novel approach of volume visualization without explicit traditional rendering pipeline. In our proposed method, volumetric images can be interactively ‘reversed’ given the volumetric data and a static volume rendered image under the desired rendering effect. Our pipeline enables 3D-navigation on it for exploring the given volumetric data without explicit transfer function. In our approach, deep neural networks, combined usage of Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNN) are employed to synthesize high-resolution and perceptually authentic images directly, inheriting the desired transfer function and viewing parameter implicitly given by the input images respectively.
DNN-VolVis:深度神经网络支持的交互式体可视化
在这项工作中,我们提出了一种新的体可视化方法,没有显式的传统渲染管道。在我们提出的方法中,在给定体积数据和静态体积渲染图像的情况下,可以交互式地“反转”体积图像。我们的管道可以在其上进行3d导航,以探索给定的体积数据,而无需显式传递函数。在我们的方法中,深度神经网络,结合使用生成对抗网络(gan)和卷积神经网络(CNN)直接合成高分辨率和感知真实的图像,分别继承输入图像隐含的期望传递函数和观看参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信