Sound masking using Genetic Algorithm & Artificial Neural Network (SMUGAANN)

Francisco B. Culibrina, E. Dadios
{"title":"Sound masking using Genetic Algorithm & Artificial Neural Network (SMUGAANN)","authors":"Francisco B. Culibrina, E. Dadios","doi":"10.1109/HNICEM.2014.7016190","DOIUrl":null,"url":null,"abstract":"One of the significant factor of privacy is the source of sound. It creates the level that determines the effectiveness of the other factor. To experience maximum privacy, cancelling of unwanted sound is necessary. To automate the design of sound masking, this proposal use Genetic Algorithm and Artificial Neural Network (SMUGAAN). By evolutionary method two stages are use: a) to determine the target sound being mask evaluation of the parameters of functional elements and b) analysis of the target sound to get the fitness value to be mask and test signals with the help of Sound Synthesis Algorithm (SSA) technique. This stage gives audible sound to mask the target sound.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the significant factor of privacy is the source of sound. It creates the level that determines the effectiveness of the other factor. To experience maximum privacy, cancelling of unwanted sound is necessary. To automate the design of sound masking, this proposal use Genetic Algorithm and Artificial Neural Network (SMUGAAN). By evolutionary method two stages are use: a) to determine the target sound being mask evaluation of the parameters of functional elements and b) analysis of the target sound to get the fitness value to be mask and test signals with the help of Sound Synthesis Algorithm (SSA) technique. This stage gives audible sound to mask the target sound.
基于遗传算法和人工神经网络的声音掩蔽
隐私的一个重要因素是声音的来源。它创造了决定其他因素有效性的水平。为了获得最大的隐私,消除不必要的声音是必要的。为了实现掩声设计的自动化,本方案采用遗传算法和人工神经网络(SMUGAAN)。该方法分为两个阶段:a)确定目标声音的掩模,对功能元素参数进行评价;b)对目标声音进行分析,利用声音合成算法(sound Synthesis Algorithm, SSA)技术得到目标声音的掩模适应度值并对信号进行测试。这个阶段发出可听到的声音来掩盖目标声音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信