Fitting the Truncated Pareto Distribution to Loss Distributions

A. V. Boyd
{"title":"Fitting the Truncated Pareto Distribution to Loss Distributions","authors":"A. V. Boyd","doi":"10.1017/S2049929900010291","DOIUrl":null,"url":null,"abstract":"Hogg and Klugman use the truncated Pareto distribution with probability density function where δ ≥0 is specified and α > 0 and λ > 0 are unknown parameters, to describe insurance claims. This is fitted first of all by the method of moments, using the estimators and where is the mean of a simple random sample, and the (biased) variance The authors then suggest, on pp. 113–16, that these estimates be used as starting values in a Newton iteration to get the maximum likelihood estimates of the parameters, but this technique can fail as a result of convergence problems. The object of this note is to show that this has led Hogg and Klugman to underestimate seriously the area in the tail of a fitted loss distribution, and to discuss a method of circumventing this difficulty.","PeriodicalId":419781,"journal":{"name":"Journal of the Staple Inn Actuarial Society","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Staple Inn Actuarial Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2049929900010291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Hogg and Klugman use the truncated Pareto distribution with probability density function where δ ≥0 is specified and α > 0 and λ > 0 are unknown parameters, to describe insurance claims. This is fitted first of all by the method of moments, using the estimators and where is the mean of a simple random sample, and the (biased) variance The authors then suggest, on pp. 113–16, that these estimates be used as starting values in a Newton iteration to get the maximum likelihood estimates of the parameters, but this technique can fail as a result of convergence problems. The object of this note is to show that this has led Hogg and Klugman to underestimate seriously the area in the tail of a fitted loss distribution, and to discuss a method of circumventing this difficulty.
截断帕累托分布与损失分布的拟合
Hogg和Klugman使用带有概率密度函数的截断帕雷托分布来描述保险索赔,其中δ≥0是指定的,α > 0和λ > 0是未知参数。这首先通过矩的方法进行拟合,使用估计量和简单随机样本的平均值,以及(有偏差的)方差。作者然后建议,在第113-16页,这些估计被用作牛顿迭代的起始值,以获得参数的最大似然估计,但这种技术可能会因为收敛问题而失败。本文的目的在于说明,这导致Hogg和Klugman严重低估了拟合损失分布尾部的面积,并讨论一种绕过这一困难的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信