Contextual Data Cleaning with Ontology Functional Dependencies

Zheng Zheng, Longtao Zheng, Morteza Alipourlangouri, Fei Chiang, Lukasz Golab, Jaroslaw Szlichta, S. Baskaran
{"title":"Contextual Data Cleaning with Ontology Functional Dependencies","authors":"Zheng Zheng, Longtao Zheng, Morteza Alipourlangouri, Fei Chiang, Lukasz Golab, Jaroslaw Szlichta, S. Baskaran","doi":"10.1145/3524303","DOIUrl":null,"url":null,"abstract":"Functional Dependencies define attribute relationships based on syntactic equality, and when used in data cleaning, they erroneously label syntactically different but semantically equivalent values as errors. We explore dependency-based data cleaning with Ontology Functional Dependencies (OFDs), which express semantic attribute relationships such as synonyms defined by an ontology. We study the theoretical foundations of OFDs, including sound and complete axioms and a linear-time inference procedure. We then propose an algorithm for discovering OFDs (exact ones and ones that hold with some exceptions) from data that uses the axioms to prune the search space. Toward enabling OFDs as data quality rules in practice, we study the problem of finding minimal repairs to a relation and ontology with respect to a set of OFDs. We demonstrate the effectiveness of our techniques on real datasets and show that OFDs can significantly reduce the number of false positive errors in data cleaning techniques that rely on traditional Functional Dependencies.","PeriodicalId":299504,"journal":{"name":"ACM Journal of Data and Information Quality (JDIQ)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Functional Dependencies define attribute relationships based on syntactic equality, and when used in data cleaning, they erroneously label syntactically different but semantically equivalent values as errors. We explore dependency-based data cleaning with Ontology Functional Dependencies (OFDs), which express semantic attribute relationships such as synonyms defined by an ontology. We study the theoretical foundations of OFDs, including sound and complete axioms and a linear-time inference procedure. We then propose an algorithm for discovering OFDs (exact ones and ones that hold with some exceptions) from data that uses the axioms to prune the search space. Toward enabling OFDs as data quality rules in practice, we study the problem of finding minimal repairs to a relation and ontology with respect to a set of OFDs. We demonstrate the effectiveness of our techniques on real datasets and show that OFDs can significantly reduce the number of false positive errors in data cleaning techniques that rely on traditional Functional Dependencies.
基于本体功能依赖的上下文数据清理
功能依赖根据语法相等定义属性关系,在数据清理中使用时,它们会错误地将语法不同但语义等价的值标记为错误。我们使用本体功能依赖(ofd)探索基于依赖的数据清理,ofd表达语义属性关系,如本体定义的同义词。我们研究了OFDs的理论基础,包括健全和完备的公理以及线性时间推理过程。然后,我们提出了一种从数据中发现ofd(精确的ofd和有一些例外的ofd)的算法,该算法使用公理来修剪搜索空间。为了在实践中使ofd成为数据质量规则,我们研究了关于一组ofd的关系和本体的最小修复问题。我们证明了我们的技术在真实数据集上的有效性,并表明ofd可以显着减少依赖于传统功能依赖的数据清理技术中的误报错误数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信