Behavior Abstraction Robustness in Agent Modeling

Robert Junges, Franziska Klügl-Frohnmeyer
{"title":"Behavior Abstraction Robustness in Agent Modeling","authors":"Robert Junges, Franziska Klügl-Frohnmeyer","doi":"10.1109/WI-IAT.2012.157","DOIUrl":null,"url":null,"abstract":"Due to the \"generative\" nature of the macro phenomena, agent-based systems require experience from the modeler to determine the proper low-level agent behavior. Adaptive and learning agents can facilitate this task: Partial or preliminary learnt versions of the behavior can serve as inspiration for the human modeler. Using a simulation process we develop agents that explore sensors and actuators inside a given environment. The exploration is guided by the attribution of rewards to their actions, expressed in an objective function. These rewards are used to develop a situation-action mapping, later abstracted to a human-readable format. In this contribution we test the robustness of a decision-tree-representation of the agent's decision-making process with regards to changes in the objective function. The importance of this study lies on understanding how sensitive the definition of the objective function is to the final abstraction of the model, not merely to a performance evaluation.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the "generative" nature of the macro phenomena, agent-based systems require experience from the modeler to determine the proper low-level agent behavior. Adaptive and learning agents can facilitate this task: Partial or preliminary learnt versions of the behavior can serve as inspiration for the human modeler. Using a simulation process we develop agents that explore sensors and actuators inside a given environment. The exploration is guided by the attribution of rewards to their actions, expressed in an objective function. These rewards are used to develop a situation-action mapping, later abstracted to a human-readable format. In this contribution we test the robustness of a decision-tree-representation of the agent's decision-making process with regards to changes in the objective function. The importance of this study lies on understanding how sensitive the definition of the objective function is to the final abstraction of the model, not merely to a performance evaluation.
Agent建模中的行为抽象鲁棒性
由于宏观现象的“生成”性质,基于代理的系统需要建模者的经验来确定适当的低级代理行为。适应性和学习型代理可以促进这项任务:行为的部分或初步学习版本可以作为人类建模者的灵感。通过模拟过程,我们开发了在给定环境中探索传感器和执行器的代理。这种探索是由玩家行为的奖励属性所引导的,并以目标函数的形式表达出来。这些奖励用于开发情境-行动映射,然后抽象为人类可读的格式。在这篇贡献中,我们测试了智能体决策过程的决策树表示在目标函数变化方面的鲁棒性。本研究的重要性在于理解目标函数的定义对模型的最终抽象有多敏感,而不仅仅是对性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信