Algorithms for nonlinear problems which use discrete approximations to derivatives

ACM '71 Pub Date : 1900-01-01 DOI:10.1145/800184.810514
J. Dennis
{"title":"Algorithms for nonlinear problems which use discrete approximations to derivatives","authors":"J. Dennis","doi":"10.1145/800184.810514","DOIUrl":null,"url":null,"abstract":"The most desirable algorithms for nonlinear programming problems call for obtaining the gradient of the objective and the Jacobian of the constraint function. The analytic form is often impossible and almost always impractical to obtain. The usual expedient is to use difference quotients to approximate the partial derivatives. This paper is concerned with the theoretical and practical ramifications of such modifications to basic algorithms. Among the methods surveyed are steepest descent, Stewart's modification of the Davidon-Fletcher-Powell method, the Levenberg-Marquardt method, Newton's method, and the nonlinear reduced gradient method. Numerical results are included in the presentation.","PeriodicalId":126192,"journal":{"name":"ACM '71","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '71","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800184.810514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The most desirable algorithms for nonlinear programming problems call for obtaining the gradient of the objective and the Jacobian of the constraint function. The analytic form is often impossible and almost always impractical to obtain. The usual expedient is to use difference quotients to approximate the partial derivatives. This paper is concerned with the theoretical and practical ramifications of such modifications to basic algorithms. Among the methods surveyed are steepest descent, Stewart's modification of the Davidon-Fletcher-Powell method, the Levenberg-Marquardt method, Newton's method, and the nonlinear reduced gradient method. Numerical results are included in the presentation.
用离散逼近求导数的非线性问题的算法
求解非线性规划问题最理想的算法是求目标的梯度和约束函数的雅可比矩阵。解析形式往往是不可能的,几乎总是不切实际的。通常的权宜之计是用差商来近似偏导数。本文关注的是对基本算法的这种修改的理论和实践后果。所调查的方法包括最陡下降法、Stewart对Davidon-Fletcher-Powell法的修正、Levenberg-Marquardt法、牛顿法和非线性约化梯度法。数值结果包括在报告中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信