Mining association rules from HIV-human protein interactions

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, R. Eils
{"title":"Mining association rules from HIV-human protein interactions","authors":"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, R. Eils","doi":"10.1109/ICSMB.2010.5735401","DOIUrl":null,"url":null,"abstract":"Identifying possible viral-host protein-protein interactions is an important and useful approach in developing new drugs targeting those interactions. In this article, a recently published dataset containing records of interactions between a set of HIV-1 proteins and a set of human proteins has been analyzed using association rule mining. The main objective is to identify a set of association rules among the human proteins with high confidence. The well-known Apriori algorithm has been utilized for discovering the association rules. Moreover, we have predicted some new viral-human interactions based on the discovered association rules.","PeriodicalId":297136,"journal":{"name":"2010 International Conference on Systems in Medicine and Biology","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Systems in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMB.2010.5735401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Identifying possible viral-host protein-protein interactions is an important and useful approach in developing new drugs targeting those interactions. In this article, a recently published dataset containing records of interactions between a set of HIV-1 proteins and a set of human proteins has been analyzed using association rule mining. The main objective is to identify a set of association rules among the human proteins with high confidence. The well-known Apriori algorithm has been utilized for discovering the association rules. Moreover, we have predicted some new viral-human interactions based on the discovered association rules.
从hiv -人类蛋白相互作用中挖掘关联规则
识别可能的病毒-宿主蛋白-蛋白相互作用是开发针对这些相互作用的新药的重要而有用的方法。在本文中,使用关联规则挖掘分析了最近发表的包含一组HIV-1蛋白质和一组人类蛋白质之间相互作用记录的数据集。主要目的是确定一套高置信度的人类蛋白质之间的关联规则。利用著名的Apriori算法发现关联规则。此外,我们还基于发现的关联规则预测了一些新的病毒与人的交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信