The curse of 140 characters: evaluating the efficacy of SMS spam detection on android

Akshay Narayan, P. Saxena
{"title":"The curse of 140 characters: evaluating the efficacy of SMS spam detection on android","authors":"Akshay Narayan, P. Saxena","doi":"10.1145/2516760.2516772","DOIUrl":null,"url":null,"abstract":"Many applications are available on Android market place for SMS spam filtering. In this paper, we conduct a detailed study of the methods used in spam filtering in these applications by reverse engineering them. Our study has three parts. First, we perform empirical tests to valuate accuracy and precision of these apps. Second, we test if we can use email spam classifiers on short text messages effectively. Empirical test results show that these email spam classifiers do not yield optimal accuracy (like they do on emails) when used with SMS data. Finally, in this work we develop a two-level stacked classifier for short text messages and demonstrate the improvement in accuracy over traditional Bayesian email spam filters. Our experimental results show that spam filtering precision and accuracy of nearly 98% (which is comparable with those of email classifiers) can be obtained using the stacked classifier we develop.","PeriodicalId":213305,"journal":{"name":"Security and Privacy in Smartphones and Mobile Devices","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy in Smartphones and Mobile Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2516760.2516772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Many applications are available on Android market place for SMS spam filtering. In this paper, we conduct a detailed study of the methods used in spam filtering in these applications by reverse engineering them. Our study has three parts. First, we perform empirical tests to valuate accuracy and precision of these apps. Second, we test if we can use email spam classifiers on short text messages effectively. Empirical test results show that these email spam classifiers do not yield optimal accuracy (like they do on emails) when used with SMS data. Finally, in this work we develop a two-level stacked classifier for short text messages and demonstrate the improvement in accuracy over traditional Bayesian email spam filters. Our experimental results show that spam filtering precision and accuracy of nearly 98% (which is comparable with those of email classifiers) can be obtained using the stacked classifier we develop.
140个字符的诅咒:评估短信垃圾邮件检测在android上的功效
Android市场上有许多用于过滤垃圾短信的应用程序。在本文中,我们通过逆向工程对这些应用中的垃圾邮件过滤方法进行了详细的研究。我们的研究有三个部分。首先,我们进行了实证测试,以评估这些应用程序的准确性和精密度。其次,我们测试是否可以有效地在短信上使用垃圾邮件分类器。经验测试结果表明,当使用SMS数据时,这些电子邮件垃圾分类器不能产生最佳的准确性(就像它们对电子邮件一样)。最后,在这项工作中,我们开发了一个两级堆叠分类器用于短文本消息,并展示了比传统贝叶斯垃圾邮件过滤器精度的提高。实验结果表明,使用我们开发的堆叠分类器可以获得接近98%的垃圾邮件过滤精度和准确度(与电子邮件分类器相当)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信