Simplifying quotient determination in high-radix modular multiplication

Holger Orup
{"title":"Simplifying quotient determination in high-radix modular multiplication","authors":"Holger Orup","doi":"10.1109/ARITH.1995.465359","DOIUrl":null,"url":null,"abstract":"Until now the use of high radices to implement modular multiplication has been questioned, because it involves complex determination of quotient digits for the module reduction. This paper presents algorithms that are obtained through rewriting of Montgomery's algorithm. The determination of quotients becomes trivial and the cycle time becomes independent of the choice of radix. It is discussed how the critical path in the loop can be reduced to a single shift-and-add operation. This implies that a true speed up is achieved by choosing higher radices.<<ETX>>","PeriodicalId":332829,"journal":{"name":"Proceedings of the 12th Symposium on Computer Arithmetic","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1995.465359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

Until now the use of high radices to implement modular multiplication has been questioned, because it involves complex determination of quotient digits for the module reduction. This paper presents algorithms that are obtained through rewriting of Montgomery's algorithm. The determination of quotients becomes trivial and the cycle time becomes independent of the choice of radix. It is discussed how the critical path in the loop can be reduced to a single shift-and-add operation. This implies that a true speed up is achieved by choosing higher radices.<>
简化高基数模乘法中商的确定
到目前为止,使用高根来实现模乘法一直受到质疑,因为它涉及到复杂的确定商数的模块约简。本文给出了对Montgomery算法进行改写后得到的算法。商的确定变得微不足道,循环时间变得与基数的选择无关。讨论了如何将环路中的关键路径简化为一次移位加操作。这意味着真正的加速是通过选择更高的基数来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信