Jibin Yang, Tieyong Cao, Xinjian Sun, Shan Huang, Lei Huan
{"title":"Phoneme classification based on supervised manifold learning","authors":"Jibin Yang, Tieyong Cao, Xinjian Sun, Shan Huang, Lei Huan","doi":"10.1109/ISRA.2012.6219346","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach for phoneme classification based on supervised manifold learning. It has been shown that speech sounds exist on a low dimensional manifold nonlinearly embedded in high dimensional space and the manifold learning technique can get high phoneme classification accuracy. To improve the performance of phoneme classification, the proposed algorithm calculates the supervised geodesic distance using the minimum distance and the set distance of different class points to enhance the discriminability of low-dimensional embedded data. Experiments show that the proposed algorithm can significantly improve phoneme classification compared to the baseline features.","PeriodicalId":266930,"journal":{"name":"2012 IEEE Symposium on Robotics and Applications (ISRA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Symposium on Robotics and Applications (ISRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRA.2012.6219346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes an approach for phoneme classification based on supervised manifold learning. It has been shown that speech sounds exist on a low dimensional manifold nonlinearly embedded in high dimensional space and the manifold learning technique can get high phoneme classification accuracy. To improve the performance of phoneme classification, the proposed algorithm calculates the supervised geodesic distance using the minimum distance and the set distance of different class points to enhance the discriminability of low-dimensional embedded data. Experiments show that the proposed algorithm can significantly improve phoneme classification compared to the baseline features.