NSGA-II: Implementation and Performance Metrics Extraction for CPU and GPU

Florina Roxana Padurariu, C. Marinescu
{"title":"NSGA-II: Implementation and Performance Metrics Extraction for CPU and GPU","authors":"Florina Roxana Padurariu, C. Marinescu","doi":"10.1109/SYNASC.2014.72","DOIUrl":null,"url":null,"abstract":"Multi-objective Optimization Evolutionary Algorithms are widely employed for solving different real-world optimization problems. Usually their runs involve a considerable amount of time because of the need to evaluate many functions. This particularity makes them good candidates of parallelization. In this work we investigate the benefits of the GPU implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) versus its CPU implementation in terms of the execution time.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-objective Optimization Evolutionary Algorithms are widely employed for solving different real-world optimization problems. Usually their runs involve a considerable amount of time because of the need to evaluate many functions. This particularity makes them good candidates of parallelization. In this work we investigate the benefits of the GPU implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) versus its CPU implementation in terms of the execution time.
NSGA-II: CPU和GPU的实现和性能指标提取
多目标优化进化算法被广泛应用于解决现实世界中的各种优化问题。通常,由于需要评估许多函数,它们的运行涉及相当多的时间。这种特殊性使它们成为并行化的良好候选对象。在这项工作中,我们研究了GPU实现非主导排序遗传算法II (NSGA-II)与CPU实现在执行时间方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信