Fault diagnosis based on genetic algorithm for optimization of EBF neural network

Yahui Wang, Yifeng Huo
{"title":"Fault diagnosis based on genetic algorithm for optimization of EBF neural network","authors":"Yahui Wang, Yifeng Huo","doi":"10.1109/WCICA.2012.6358425","DOIUrl":null,"url":null,"abstract":"Ellipsoidal basis function(EBF) can make the partition and limitary of input space. Compared with the Guassian function of radial basis function(RBF) neural network, the EBF can make the partition of input space more specific, which has the higher capability of pattern recognition. However, the neural network has a common problem of training the weight and threshold. The evolution of genetic algorithm(GA) can maximumly optimize the training time of neural network. In this paper, a new method based on GA-EBF neural network was proposed. The simulation experiment shows that the proposed method has a higher rate of fault diagnosis than that of RBF neural network.1","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6358425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ellipsoidal basis function(EBF) can make the partition and limitary of input space. Compared with the Guassian function of radial basis function(RBF) neural network, the EBF can make the partition of input space more specific, which has the higher capability of pattern recognition. However, the neural network has a common problem of training the weight and threshold. The evolution of genetic algorithm(GA) can maximumly optimize the training time of neural network. In this paper, a new method based on GA-EBF neural network was proposed. The simulation experiment shows that the proposed method has a higher rate of fault diagnosis than that of RBF neural network.1
基于遗传算法的EBF神经网络故障诊断优化
椭球基函数(EBF)可以对输入空间进行划分和限定。与径向基函数(RBF)神经网络的高斯函数相比,EBF可以使输入空间的划分更加具体,具有更高的模式识别能力。然而,神经网络存在一个常见的问题,即权值和阈值的训练。遗传算法的进化可以最大限度地优化神经网络的训练时间。本文提出了一种基于GA-EBF神经网络的新方法。仿真实验表明,该方法比RBF神经网络具有更高的故障诊断率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信