Sarala Kumari, N. Padmakumara, Waruni Palangoda, Chanuka Balagalla, P. Samarasingha, Aruna Fernando, N. Pemadasa
{"title":"Automated Diabetic Retinopathy Screening With Montage Fundus Images","authors":"Sarala Kumari, N. Padmakumara, Waruni Palangoda, Chanuka Balagalla, P. Samarasingha, Aruna Fernando, N. Pemadasa","doi":"10.1109/ICAC51239.2020.9357137","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR), also known as diabetic eye disease is one of the major causes of blindness in the active population. The longer a person has diabetes, higher the chances of developing DR. This research paper is an attempt towards finding an automatic way to staging DR using montage eye images through artificial intelligence (AI). Convolutional neural networks (CNNs) play a big role in DR detection. Using transfer learning and hyper-parameter tuning DR staging is analyzed through different models. VGG16 gave the highest classification accuracies for the stages Proliferative DR (PDR) & Non-proliferative DR (NPDR). The highest level of NPDR is severe DR which achieved 94.9% classification accuracy (CA) & special features like cotton wool & laser treatment performed at 83.3% CA for each. Moreover, by using patient's history data such as age, right eye & left eye value accuracies & diabetic diagnosed year, system can predict the DR stages. That predictive model has achieved the best CA of 94 % by using Xgboost classifier. Overall, a fully functional app has been developed to detect DR stages with Montage Fundus images using AI.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC51239.2020.9357137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR), also known as diabetic eye disease is one of the major causes of blindness in the active population. The longer a person has diabetes, higher the chances of developing DR. This research paper is an attempt towards finding an automatic way to staging DR using montage eye images through artificial intelligence (AI). Convolutional neural networks (CNNs) play a big role in DR detection. Using transfer learning and hyper-parameter tuning DR staging is analyzed through different models. VGG16 gave the highest classification accuracies for the stages Proliferative DR (PDR) & Non-proliferative DR (NPDR). The highest level of NPDR is severe DR which achieved 94.9% classification accuracy (CA) & special features like cotton wool & laser treatment performed at 83.3% CA for each. Moreover, by using patient's history data such as age, right eye & left eye value accuracies & diabetic diagnosed year, system can predict the DR stages. That predictive model has achieved the best CA of 94 % by using Xgboost classifier. Overall, a fully functional app has been developed to detect DR stages with Montage Fundus images using AI.