RESOURCE DISCOVERY IN DISTRIBUTED EXASCALE SYSTEMS USING A MULTI-AGENT MODEL: CATEGORIZATION OF AGENTS BASED ON THEIR CHARACTERISTICS

Fakhraddin Abdullayev
{"title":"RESOURCE DISCOVERY IN DISTRIBUTED EXASCALE SYSTEMS USING A MULTI-AGENT MODEL: CATEGORIZATION OF AGENTS BASED ON THEIR CHARACTERISTICS","authors":"Fakhraddin Abdullayev","doi":"10.32010/26166127.2023.6.1.113.120","DOIUrl":null,"url":null,"abstract":"Resource discovery is a crucial component in high-performance computing (HPC) systems. This paper presents a multi-agent model for resource discovery in distributed exascale systems. Agents are categorized based on resource types and behavior-specific characteristics. The model enables efficient identification and acquisition of memory, process, file, and IO resources. Through a comprehensive exploration, we highlight the potential of our approach in addressing resource discovery challenges in exascale computing systems, paving the way for optimized resource utilization and enhanced system performance.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2023.6.1.113.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resource discovery is a crucial component in high-performance computing (HPC) systems. This paper presents a multi-agent model for resource discovery in distributed exascale systems. Agents are categorized based on resource types and behavior-specific characteristics. The model enables efficient identification and acquisition of memory, process, file, and IO resources. Through a comprehensive exploration, we highlight the potential of our approach in addressing resource discovery challenges in exascale computing systems, paving the way for optimized resource utilization and enhanced system performance.
使用多代理模型的分布式百亿亿级系统中的资源发现:基于其特征的代理分类
资源发现是高性能计算(HPC)系统中的一个重要组成部分。提出了一种用于分布式百亿亿级系统中资源发现的多智能体模型。座席根据资源类型和特定于行为的特征进行分类。该模型能够有效地识别和获取内存、进程、文件和IO资源。通过全面的探索,我们强调了我们的方法在解决百亿亿次计算系统中资源发现挑战方面的潜力,为优化资源利用和增强系统性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信