Complex-valued neural networks for fully-temporal micro-Doppler classification

Daniel A. Brooks, Olivier Schwander, F. Barbaresco, J. Schneider, M. Cord
{"title":"Complex-valued neural networks for fully-temporal micro-Doppler classification","authors":"Daniel A. Brooks, Olivier Schwander, F. Barbaresco, J. Schneider, M. Cord","doi":"10.23919/IRS.2019.8768161","DOIUrl":null,"url":null,"abstract":"Micro-Doppler analysis commonly makes use of the log-scaled, real-valued spectrogram, and recent work involving deep learning architectures for classification are no exception. Some works in neighboring fields of research directly exploit the raw temporal signal, but do not handle complex numbers, which are inherent to radar IQ signals. In this paper, we propose a complex-valued, fully temporal neural network which simultaneously exploits the raw signal and the spectrogram by introducing a Fourier-like layer suitable to deep architectures. We show improved results under certain conditions on synthetic radar data compared to a real-valued counterpart.","PeriodicalId":155427,"journal":{"name":"2019 20th International Radar Symposium (IRS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2019.8768161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Micro-Doppler analysis commonly makes use of the log-scaled, real-valued spectrogram, and recent work involving deep learning architectures for classification are no exception. Some works in neighboring fields of research directly exploit the raw temporal signal, but do not handle complex numbers, which are inherent to radar IQ signals. In this paper, we propose a complex-valued, fully temporal neural network which simultaneously exploits the raw signal and the spectrogram by introducing a Fourier-like layer suitable to deep architectures. We show improved results under certain conditions on synthetic radar data compared to a real-valued counterpart.
全时间微多普勒分类的复值神经网络
微多普勒分析通常使用对数尺度的实值谱图,最近涉及深度学习架构的分类工作也不例外。邻近研究领域的一些工作直接利用原始时间信号,而不处理雷达IQ信号固有的复数。在本文中,我们提出了一种复值的全时间神经网络,它通过引入适合于深度结构的类傅立叶层,同时利用原始信号和频谱图。我们展示了在一定条件下合成雷达数据与实值对应数据的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信