Robust RBF neural network control with adaptive sliding mode compensator for MEMS gyroscope

J. Fei, Yuzheng Yang, Dan Wu
{"title":"Robust RBF neural network control with adaptive sliding mode compensator for MEMS gyroscope","authors":"J. Fei, Yuzheng Yang, Dan Wu","doi":"10.1109/ICIS.2013.6607881","DOIUrl":null,"url":null,"abstract":"A new robust neural sliding mode(RNSM) tracking control scheme using radial basis function(RBF) neural network (NN) is presented for MEMS (MicroElectroMechanical systems) Z-axis gyroscope to achieve robustness and asymptotic tracking error convergence. An adaptive RBF NN controller is developed to approximate and compensate the large uncertain system dynamics, and a robust compensator is designed to eliminate the impact of NN modeling error and external disturbances. Moreover, another RBF NN is employed to learn the upper bound of NN modeling error and external disturbances, so the prior knowledge of the upper bound of system uncertainties is not required. All the adaptive laws in the RNSM control system are derived in the same Lyapunov framework, which can guarantee the stability of the closed loop system. Numerical simulations for a MEMS gyroscope are investigated to verify the effectiveness of the proposed RNSM tracking control scheme.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2013.6607881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new robust neural sliding mode(RNSM) tracking control scheme using radial basis function(RBF) neural network (NN) is presented for MEMS (MicroElectroMechanical systems) Z-axis gyroscope to achieve robustness and asymptotic tracking error convergence. An adaptive RBF NN controller is developed to approximate and compensate the large uncertain system dynamics, and a robust compensator is designed to eliminate the impact of NN modeling error and external disturbances. Moreover, another RBF NN is employed to learn the upper bound of NN modeling error and external disturbances, so the prior knowledge of the upper bound of system uncertainties is not required. All the adaptive laws in the RNSM control system are derived in the same Lyapunov framework, which can guarantee the stability of the closed loop system. Numerical simulations for a MEMS gyroscope are investigated to verify the effectiveness of the proposed RNSM tracking control scheme.
基于自适应滑模补偿器的鲁棒RBF神经网络控制
针对MEMS(微机电系统)z轴陀螺仪,提出了一种基于径向基函数(RBF)神经网络(NN)的鲁棒神经滑模(RNSM)跟踪控制方案,以达到鲁棒性和跟踪误差渐近收敛的目的。设计了一种自适应RBF神经网络控制器来逼近和补偿大不确定系统动力学,并设计了鲁棒补偿器来消除神经网络建模误差和外部干扰的影响。此外,采用另一种RBF神经网络来学习神经网络建模误差和外部干扰的上界,因此不需要系统不确定性上界的先验知识。RNSM控制系统的所有自适应律均在同一Lyapunov框架下导出,保证了闭环系统的稳定性。通过对MEMS陀螺仪的数值仿真,验证了所提出的RNSM跟踪控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信