Rectangular Kronecker Coefficients and Plethysms in Geometric Complexity Theory

Christian Ikenmeyer, G. Panova
{"title":"Rectangular Kronecker Coefficients and Plethysms in Geometric Complexity Theory","authors":"Christian Ikenmeyer, G. Panova","doi":"10.1109/FOCS.2016.50","DOIUrl":null,"url":null,"abstract":"The geometric complexity theory program is an approach to separate algebraic complexity classes, more precisely to show the superpolynomial growth of the determinantal complexity dc(perm) of the permanent polynomial. Mulmuley and Sohoni showed that the vanishing behaviour of rectangular Kronecker coefficients could in principle be used to show some lower bounds on dc(perm) and they conjectured that superpolynomial lower bounds on dc(perm) could be shown in this way. In this paper we disprove this conjecture by Mulmuley and Sohoni, i.e., we prove that the vanishing of rectangular Kronecker coefficients cannot be used to prove superpolynomial lower bounds on dc(perm).","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

The geometric complexity theory program is an approach to separate algebraic complexity classes, more precisely to show the superpolynomial growth of the determinantal complexity dc(perm) of the permanent polynomial. Mulmuley and Sohoni showed that the vanishing behaviour of rectangular Kronecker coefficients could in principle be used to show some lower bounds on dc(perm) and they conjectured that superpolynomial lower bounds on dc(perm) could be shown in this way. In this paper we disprove this conjecture by Mulmuley and Sohoni, i.e., we prove that the vanishing of rectangular Kronecker coefficients cannot be used to prove superpolynomial lower bounds on dc(perm).
几何复杂性理论中的矩形克罗内克系数和体积
几何复杂性理论程序是一种分离代数复杂性类的方法,更准确地表示永久多项式的行列式复杂性dc(perm)的超多项式增长。Mulmuley和Sohoni表明,矩形Kronecker系数的消失行为原则上可以用来表示dc(perm)的一些下界,他们推测dc(perm)的超多项式下界可以用这种方式表示。本文反驳了Mulmuley和Sohoni的这一猜想,即证明了矩形Kronecker系数的消失不能用来证明dc(perm)上的超多项式下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信