A model of canopy photosynthesis in rice that combines sub-models of 3D plant architecture, radiation transfer, leaf energy balance and C3 photosynthesis

Qingfeng Song, Xinguang Zhu
{"title":"A model of canopy photosynthesis in rice that combines sub-models of 3D plant architecture, radiation transfer, leaf energy balance and C3 photosynthesis","authors":"Qingfeng Song, Xinguang Zhu","doi":"10.1109/PMA.2012.6524858","DOIUrl":null,"url":null,"abstract":"Canopy photosynthetic CO2 uptake rate, instead of leaf photosynthetic CO2 assimilation rate, correlates with biomass production. We aim to develop a fully integrated model of canopy photosynthesis, which includes not only the prediction of the microclimates inside a canopy but also the related biophysical and biochemical processes in a leaf. Here we report our current status of the model of canopy photosynthesis, which includes the plant architecture, a ray-tracing algorithm, leaf energy balance and leaf level photosynthesis. The details of the modules involved in the model are described in this article. We also demonstrated its application by simulating a diurnal canopy photosynthesis rates.","PeriodicalId":117786,"journal":{"name":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2012.6524858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Canopy photosynthetic CO2 uptake rate, instead of leaf photosynthetic CO2 assimilation rate, correlates with biomass production. We aim to develop a fully integrated model of canopy photosynthesis, which includes not only the prediction of the microclimates inside a canopy but also the related biophysical and biochemical processes in a leaf. Here we report our current status of the model of canopy photosynthesis, which includes the plant architecture, a ray-tracing algorithm, leaf energy balance and leaf level photosynthesis. The details of the modules involved in the model are described in this article. We also demonstrated its application by simulating a diurnal canopy photosynthesis rates.
结合三维植物结构、辐射传输、叶片能量平衡和C3光合作用子模型的水稻冠层光合作用模型
与生物量产量相关的是冠层光合CO2吸收速率,而不是叶片光合CO2同化速率。我们的目标是建立一个完整的冠层光合作用模型,该模型不仅包括冠层内小气候的预测,还包括叶片中相关的生物物理和生化过程。本文报道了目前冠层光合作用模型的研究现状,包括植物结构、光线追踪算法、叶片能量平衡和叶片水平光合作用。本文描述了模型中涉及的模块的详细信息。我们还通过模拟日冠层光合速率来演示其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信