{"title":"Automatic Image Annotation Using Word Embedding Learning","authors":"Qi Chen, A. Yip, C. Tan","doi":"10.1109/ICTAI.2012.44","DOIUrl":null,"url":null,"abstract":"Automatically annotating words for images is a key to semantic-level image retrieval. Recently, several embedding learning based methods achieve good performance in this task which inspires this paper. Here we propose a novel word embedding model in which both images and words can be represented in the same embedding space. The embedding space is learnt in a discriminative nearest neighbor manner such that the annotation information could be propagated among neighbors. In order to accelerate model learning and testing, approximate-nearest-neighbor search is performed, and word embedding space is learnt in a stochastic manner. The experimental results demonstrate the effectiveness of the proposed method.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automatically annotating words for images is a key to semantic-level image retrieval. Recently, several embedding learning based methods achieve good performance in this task which inspires this paper. Here we propose a novel word embedding model in which both images and words can be represented in the same embedding space. The embedding space is learnt in a discriminative nearest neighbor manner such that the annotation information could be propagated among neighbors. In order to accelerate model learning and testing, approximate-nearest-neighbor search is performed, and word embedding space is learnt in a stochastic manner. The experimental results demonstrate the effectiveness of the proposed method.