Robust least-squares estimators based on semidefinite programming

J. Dahl, L. Vandenberghe, B. Fleury
{"title":"Robust least-squares estimators based on semidefinite programming","authors":"J. Dahl, L. Vandenberghe, B. Fleury","doi":"10.1109/ACSSC.2002.1197082","DOIUrl":null,"url":null,"abstract":"We apply recently developed semidefinite programming (SDP) techniques to robust estimation and equalization problems in communication systems with uncertain channels. We derive robust versions of three widely used estimators: the zero-forcing estimator (ZFE), the minimum-mean squared error estimator (MMSEE), and the minimum-mean squared error decision feedback estimator (MMSE-DFE). The formulation of the robust estimation problem takes into account structure in the uncertainty, modeled as an ellipsoidal family of possible FIR channels. The robust estimators are found as the global minimizers of the worst-case residual, and can be computed at a moderate computational cost via semidefinite programming.","PeriodicalId":284950,"journal":{"name":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2002.1197082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We apply recently developed semidefinite programming (SDP) techniques to robust estimation and equalization problems in communication systems with uncertain channels. We derive robust versions of three widely used estimators: the zero-forcing estimator (ZFE), the minimum-mean squared error estimator (MMSEE), and the minimum-mean squared error decision feedback estimator (MMSE-DFE). The formulation of the robust estimation problem takes into account structure in the uncertainty, modeled as an ellipsoidal family of possible FIR channels. The robust estimators are found as the global minimizers of the worst-case residual, and can be computed at a moderate computational cost via semidefinite programming.
基于半定规划的鲁棒最小二乘估计
本文将半定规划(SDP)技术应用于具有不确定信道的通信系统的鲁棒估计和均衡问题。我们推导了三种广泛使用的估计器的鲁棒版本:零强迫估计器(ZFE),最小均方误差估计器(MMSEE)和最小均方误差决策反馈估计器(MMSE-DFE)。鲁棒估计问题的公式考虑了不确定性中的结构,建模为可能FIR信道的椭球族。鲁棒估计量是最坏情况残差的全局最小值,并且可以通过半定规划以中等的计算成本计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信