Overcoming inaccuracies in optical multilayer perceptrons

P. Moerland, E. Fiesler, I. Saxena
{"title":"Overcoming inaccuracies in optical multilayer perceptrons","authors":"P. Moerland, E. Fiesler, I. Saxena","doi":"10.1109/ISNFS.1996.603821","DOIUrl":null,"url":null,"abstract":"All-optical multilayer perceptrons differ in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the use of limited accuracy for the weights. In this paper an adaptation of the backpropagation learning rule is presented that compensates for these three non-idealities. The good performance of this learning rule is illustrated by a series of experiments. This algorithm enables the implementation of all-optical multilayer perceptrons where learning occurs under control of a computer.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All-optical multilayer perceptrons differ in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the use of limited accuracy for the weights. In this paper an adaptation of the backpropagation learning rule is presented that compensates for these three non-idealities. The good performance of this learning rule is illustrated by a series of experiments. This algorithm enables the implementation of all-optical multilayer perceptrons where learning occurs under control of a computer.
克服光学多层感知器的不准确性
全光多层感知器与理想的神经网络模型有很多不同。例如,使用截断的、不对称的、非标准增益的非理想激活函数,将网络参数限制为非负值,以及使用有限的权重精度。本文提出了一种自适应的反向传播学习规则来补偿这三种非理想性。通过一系列的实验证明了该学习规则的良好性能。该算法能够实现全光多层感知器,其中学习在计算机控制下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信