Research on Fog Ranging Based on Binocular Vision

Sheng Jing, Liheng Wang, Zhu Jingshan, Liao Shengjie
{"title":"Research on Fog Ranging Based on Binocular Vision","authors":"Sheng Jing, Liheng Wang, Zhu Jingshan, Liao Shengjie","doi":"10.1109/AICIT55386.2022.9930174","DOIUrl":null,"url":null,"abstract":"For the robot to travel in foggy weather, the target feature information is not obvious, which affects the robot’s ranging speed and accuracy. In order to realize the rapid and stable advancement of the robot, a binocular vision ranging detection method for the target under foggy conditions is designed and implemented. First, the dehazing algorithm MSBDN (Multi-Scale Boosted Dehazing Network) is used to dehaze the target image to restore the characteristic information of the target; then, the Zhang Zhengyou calibration method is used to obtain the internal and external parameters of the camera; then, the semi-global matching algorithm SGBM (semi-global-blockmatching) to match pixels to obtain the target disparity map; Use WLS (weighted least squares) filtering to smooth and denoise the initial disparity map to obtain the optimal disparity map. Convert disparity map to depth map. The experimental simulation shows that the method can restore the actual features of the image better in the poor image quality of foggy days, improve the distance measurement accuracy, and meet the requirements of robot travel in foggy days.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the robot to travel in foggy weather, the target feature information is not obvious, which affects the robot’s ranging speed and accuracy. In order to realize the rapid and stable advancement of the robot, a binocular vision ranging detection method for the target under foggy conditions is designed and implemented. First, the dehazing algorithm MSBDN (Multi-Scale Boosted Dehazing Network) is used to dehaze the target image to restore the characteristic information of the target; then, the Zhang Zhengyou calibration method is used to obtain the internal and external parameters of the camera; then, the semi-global matching algorithm SGBM (semi-global-blockmatching) to match pixels to obtain the target disparity map; Use WLS (weighted least squares) filtering to smooth and denoise the initial disparity map to obtain the optimal disparity map. Convert disparity map to depth map. The experimental simulation shows that the method can restore the actual features of the image better in the poor image quality of foggy days, improve the distance measurement accuracy, and meet the requirements of robot travel in foggy days.
基于双目视觉的雾测距研究
对于机器人在大雾天气中行走,目标特征信息不明显,影响了机器人的测距速度和精度。为了实现机器人的快速稳定推进,设计并实现了一种雾天条件下目标的双目视觉测距检测方法。首先,采用多尺度增强去雾算法MSBDN (Multi-Scale boosting dehazing Network)对目标图像进行去雾处理,恢复目标的特征信息;然后,采用张正友定标法获得摄像机的内外参数;然后,采用半全局匹配算法SGBM(半全局块匹配)对像素进行匹配,得到目标视差图;利用加权最小二乘滤波对初始视差图进行平滑和去噪,得到最优视差图。将视差图转换为深度图。实验仿真表明,该方法能在雾天图像质量较差的情况下较好地还原图像的实际特征,提高距离测量精度,满足机器人雾天出行的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信