Automatic Tuning of MST Segmentation of Mammograms for Registration and Mass Detection Algorithms

M. Bajger, Fei Ma, M. Bottema
{"title":"Automatic Tuning of MST Segmentation of Mammograms for Registration and Mass Detection Algorithms","authors":"M. Bajger, Fei Ma, M. Bottema","doi":"10.1109/DICTA.2009.72","DOIUrl":null,"url":null,"abstract":"A technique utilizing an entropy measure is developed for automatically tuning the segmentation of screening mammograms by minimum spanning trees (MST). The lack of such technique has been a major obstacle in previous work to segment mammograms for registration and applying mass detection algorithms. The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a local database. The method performance is evaluated in conjunction with three different preprocessing filters: gaussian, anisotropic and neutrosophic. Results show that the automatic tuning has the potential to produce state-of-the art segmentation of mass-like objects in mammograms. The neutrosophic filtering provided the best performance.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A technique utilizing an entropy measure is developed for automatically tuning the segmentation of screening mammograms by minimum spanning trees (MST). The lack of such technique has been a major obstacle in previous work to segment mammograms for registration and applying mass detection algorithms. The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a local database. The method performance is evaluated in conjunction with three different preprocessing filters: gaussian, anisotropic and neutrosophic. Results show that the automatic tuning has the potential to produce state-of-the art segmentation of mass-like objects in mammograms. The neutrosophic filtering provided the best performance.
用于配准和质量检测算法的乳房x光片MST分割的自动调整
提出了一种利用熵测度的方法,利用最小生成树(MST)自动调整乳房x线影像的分割。缺乏这样的技术一直是一个主要障碍,在以前的工作中,分割乳房x线照片登记和应用质量检测算法。所提出的方法在两组乳房x光片上进行了测试:一组从公开可用的Mini-MIAS数据库中选择的55张乳房x光片,以及从本地数据库中选择的37张乳房x光片。结合三种不同的预处理滤波器:高斯滤波器、各向异性滤波器和中性滤波器,对该方法的性能进行了评估。结果表明,自动调谐有可能在乳房x光片中产生最先进的肿块样物体分割。中性粒细胞过滤效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信