Automatic ECG interpretation via morphological feature extraction and SVM inference nets

W. Lei, M. Dong, Jun Shi, Binbin Fu
{"title":"Automatic ECG interpretation via morphological feature extraction and SVM inference nets","authors":"W. Lei, M. Dong, Jun Shi, Binbin Fu","doi":"10.1109/APCCAS.2008.4746008","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to the intelligent heart rhythm recognition, via integration of Hermite based orthogonal polynomial decomposition (OPD) and support vector machines (SVMs) classification. In regard to feature characterization, the orthogonal transformation based on Hermite basis polynomials is proposed to characterize the morphological features of ECG data. For the goal of multi-class ECG classification, the one-against-all (OAA) strategy is applied to reduce the multi-class SVMs into several binary SVMs. In this study, most of the heart rhythm type in MIT-BIH arrhythmia database is concerned. The numerical result shows out the good performance of proposed automatic interpreter in reliability and accuracy.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4746008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel approach to the intelligent heart rhythm recognition, via integration of Hermite based orthogonal polynomial decomposition (OPD) and support vector machines (SVMs) classification. In regard to feature characterization, the orthogonal transformation based on Hermite basis polynomials is proposed to characterize the morphological features of ECG data. For the goal of multi-class ECG classification, the one-against-all (OAA) strategy is applied to reduce the multi-class SVMs into several binary SVMs. In this study, most of the heart rhythm type in MIT-BIH arrhythmia database is concerned. The numerical result shows out the good performance of proposed automatic interpreter in reliability and accuracy.
基于形态特征提取和支持向量机推理网络的心电自动判读
本文提出了一种基于Hermite正交多项式分解(OPD)和支持向量机(svm)分类相结合的智能心律识别方法。在特征表征方面,提出了基于Hermite基多项式的正交变换来表征心电数据的形态特征。针对多类心电分类的目标,采用一对全(OAA)策略将多类支持向量机分解为多个二值支持向量机。本研究涉及MIT-BIH心律失常数据库中的大多数心律类型。数值计算结果表明,所提出的自动解释器在可靠性和准确性方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信