{"title":"Classification of the syllables sound using wavelet, Renyi entropy and AR-PSD features","authors":"Domy Kristomo, Risanuri Hidayat, I. Soesanti","doi":"10.1109/CSPA.2017.8064931","DOIUrl":null,"url":null,"abstract":"Feature extraction plays a very important role in the speech classification process because a better feature is good for improving the classification rate. This paper presents a speech feature extraction method by using Discrete Wavelet Transform (DWT) at 7th level of decomposition with mother wavelet of Dau-bechies 2, Renyi Entropy (RE), Autoregressive Power Spectral Density (AR-PSD), Statistical, as well as the combination of each method for extracting and classifying the certain Indonesian velar-vowel and alveolar-vowel syllables. Five different features set used in this study, namely the combination features of DWT and statistical (WS), RE, the combination of AR-PSD and Statistical (PSDS), the combination of PSDS and the selected features of RE (RPSDS), and the combination of DWT, RE, and AR-PSD (WRPSDS). Each syllable is segmented at a certain length to form a consonant-vowel. Multi-layer perceptron is used as a classifier after feature extraction process. The results show that the rank of the average recognition rate are WRPSDS, WS, RPSDS, PSDS, and RE, respectively.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Feature extraction plays a very important role in the speech classification process because a better feature is good for improving the classification rate. This paper presents a speech feature extraction method by using Discrete Wavelet Transform (DWT) at 7th level of decomposition with mother wavelet of Dau-bechies 2, Renyi Entropy (RE), Autoregressive Power Spectral Density (AR-PSD), Statistical, as well as the combination of each method for extracting and classifying the certain Indonesian velar-vowel and alveolar-vowel syllables. Five different features set used in this study, namely the combination features of DWT and statistical (WS), RE, the combination of AR-PSD and Statistical (PSDS), the combination of PSDS and the selected features of RE (RPSDS), and the combination of DWT, RE, and AR-PSD (WRPSDS). Each syllable is segmented at a certain length to form a consonant-vowel. Multi-layer perceptron is used as a classifier after feature extraction process. The results show that the rank of the average recognition rate are WRPSDS, WS, RPSDS, PSDS, and RE, respectively.