Classification of the syllables sound using wavelet, Renyi entropy and AR-PSD features

Domy Kristomo, Risanuri Hidayat, I. Soesanti
{"title":"Classification of the syllables sound using wavelet, Renyi entropy and AR-PSD features","authors":"Domy Kristomo, Risanuri Hidayat, I. Soesanti","doi":"10.1109/CSPA.2017.8064931","DOIUrl":null,"url":null,"abstract":"Feature extraction plays a very important role in the speech classification process because a better feature is good for improving the classification rate. This paper presents a speech feature extraction method by using Discrete Wavelet Transform (DWT) at 7th level of decomposition with mother wavelet of Dau-bechies 2, Renyi Entropy (RE), Autoregressive Power Spectral Density (AR-PSD), Statistical, as well as the combination of each method for extracting and classifying the certain Indonesian velar-vowel and alveolar-vowel syllables. Five different features set used in this study, namely the combination features of DWT and statistical (WS), RE, the combination of AR-PSD and Statistical (PSDS), the combination of PSDS and the selected features of RE (RPSDS), and the combination of DWT, RE, and AR-PSD (WRPSDS). Each syllable is segmented at a certain length to form a consonant-vowel. Multi-layer perceptron is used as a classifier after feature extraction process. The results show that the rank of the average recognition rate are WRPSDS, WS, RPSDS, PSDS, and RE, respectively.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Feature extraction plays a very important role in the speech classification process because a better feature is good for improving the classification rate. This paper presents a speech feature extraction method by using Discrete Wavelet Transform (DWT) at 7th level of decomposition with mother wavelet of Dau-bechies 2, Renyi Entropy (RE), Autoregressive Power Spectral Density (AR-PSD), Statistical, as well as the combination of each method for extracting and classifying the certain Indonesian velar-vowel and alveolar-vowel syllables. Five different features set used in this study, namely the combination features of DWT and statistical (WS), RE, the combination of AR-PSD and Statistical (PSDS), the combination of PSDS and the selected features of RE (RPSDS), and the combination of DWT, RE, and AR-PSD (WRPSDS). Each syllable is segmented at a certain length to form a consonant-vowel. Multi-layer perceptron is used as a classifier after feature extraction process. The results show that the rank of the average recognition rate are WRPSDS, WS, RPSDS, PSDS, and RE, respectively.
基于小波、人义熵和AR-PSD特征的音节语音分类
特征提取在语音分类过程中起着非常重要的作用,好的特征有利于提高分类率。本文提出了一种利用7级离散小波变换(DWT)与母小波分解、Renyi熵(RE)、自回归功率谱密度(AR-PSD)和统计学相结合的方法提取印尼语部分velar-元音和alveal -元音音节的语音特征提取方法。本研究使用了五种不同的特征集,分别是DWT与statistical的组合特征(WS)、RE、AR-PSD与statistical的组合特征(PSDS)、PSDS与RE的选择特征(RPSDS)、DWT、RE和AR-PSD的组合特征(WRPSDS)。每个音节被分割成一定的长度,形成一个辅音-元音。经过特征提取后,使用多层感知器作为分类器。结果表明:平均识别率排名依次为WRPSDS、WS、RPSDS、PSDS、RE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信