Randomised block-coordinate Frank-Wolfe algorithm for distributed online learning over networks

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingchao Li, Qingtao Wu, Ruijuan Zheng, Junlong Zhu, Quanbo Ge, Mingchuan Zhang
{"title":"Randomised block-coordinate Frank-Wolfe algorithm for distributed online learning over networks","authors":"Jingchao Li,&nbsp;Qingtao Wu,&nbsp;Ruijuan Zheng,&nbsp;Junlong Zhu,&nbsp;Quanbo Ge,&nbsp;Mingchuan Zhang","doi":"10.1049/ccs.2020.0007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where <i>T</i> is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where T is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.

Abstract Image

分布式在线学习的随机块坐标Frank-Wolfe算法
基于Frank-Wolfe方法的分布式在线算法可以有效地处理约束优化问题。然而,在这些算法中,计算全(次)梯度向量导致每次迭代的计算成本巨大。为了降低上述算法的计算成本,作者提出了一种基于网络的分布式在线随机块坐标Frank-Wolfe算法。在该算法中,网络中的每个agent只需要计算其(子)梯度向量坐标的一个子集。并对该算法的遗憾界进行了详细的理论分析。当所有局部目标函数都满足强凸函数的条件时,算法得到的遗憾界,其中T为总迭代次数。最后,通过仿真实验验证了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信