{"title":"Randomised block-coordinate Frank-Wolfe algorithm for distributed online learning over networks","authors":"Jingchao Li, Qingtao Wu, Ruijuan Zheng, Junlong Zhu, Quanbo Ge, Mingchuan Zhang","doi":"10.1049/ccs.2020.0007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where <i>T</i> is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where T is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.