POSTER: Application-Driven Near-Data Processing for Similarity Search

Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi, L. Ceze, M. Oskin
{"title":"POSTER: Application-Driven Near-Data Processing for Similarity Search","authors":"Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi, L. Ceze, M. Oskin","doi":"10.1109/PACT.2017.25","DOIUrl":null,"url":null,"abstract":"Similarity search is a key to important applications such as content-based search, deduplication, natural language processing, computer vision, databases, and graphics. At its core, similarity search manifests as k-nearest neighbors (kNN) which consists of parallel distance calculations and a top-k sort. While kNN is poorly supported by today's architectures, it is ideal for near-data processing because of its high memory bandwidth requirements. This work proposes a near-data processing accelerator for similarity search: the similarity search associative memory (SSAM).","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Similarity search is a key to important applications such as content-based search, deduplication, natural language processing, computer vision, databases, and graphics. At its core, similarity search manifests as k-nearest neighbors (kNN) which consists of parallel distance calculations and a top-k sort. While kNN is poorly supported by today's architectures, it is ideal for near-data processing because of its high memory bandwidth requirements. This work proposes a near-data processing accelerator for similarity search: the similarity search associative memory (SSAM).
海报:应用驱动的近数据处理相似搜索
相似度搜索是诸如基于内容的搜索、重复数据删除、自然语言处理、计算机视觉、数据库和图形等重要应用程序的关键。在其核心,相似性搜索表现为k近邻(kNN),由并行距离计算和top-k排序组成。虽然目前的体系结构对kNN的支持很差,但由于其高内存带宽要求,它是近数据处理的理想选择。本文提出了一种用于相似搜索的近数据处理加速器:相似搜索联想记忆(SSAM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信