{"title":"Transformer: Image Classification Based on Constitutional Neural Networks","authors":"Yangrui Cheng, Fuqiang Xie, Yongzhou Li, G. Zhao","doi":"10.1109/ICCECE58074.2023.10135505","DOIUrl":null,"url":null,"abstract":"To solve the problem of excessive calculation caused by inputting images with a large size when using ViT network structure to implement image classification tasks, this paper proposes a ViT network model based on a convolutional neural network (CNN). Its network structure first uses CNN to extract a low-resolution feature map and then uses ViT structure to process the low-resolution feature map. At this time, the computational pressure is greatly relieved. In this paper, the author uses VGG16 as the Backbone and ViT network structure to build the VGG16-TE network and implements an image classification task on the ImageNet-1k dataset. Compared with the VGG16 model, the accuracy of Top1 and Top5 image classification is improved by 2.5 points and 1.7 points respectively. Besides, this paper builds a ResNet34-TE network with ResNet34 as the Backbone and ViT network and implements an image classification task on the ImageNet-1k dataset. Compared with the ResNet34 model, the accuracy of Top1 and Top5 image classification is improved by 2.1 points and 1.2 points respectively. VGG16-TE and ResNet34-TE parameters decrease by 68M and 61.5M compared with that of the ViT-Base model.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem of excessive calculation caused by inputting images with a large size when using ViT network structure to implement image classification tasks, this paper proposes a ViT network model based on a convolutional neural network (CNN). Its network structure first uses CNN to extract a low-resolution feature map and then uses ViT structure to process the low-resolution feature map. At this time, the computational pressure is greatly relieved. In this paper, the author uses VGG16 as the Backbone and ViT network structure to build the VGG16-TE network and implements an image classification task on the ImageNet-1k dataset. Compared with the VGG16 model, the accuracy of Top1 and Top5 image classification is improved by 2.5 points and 1.7 points respectively. Besides, this paper builds a ResNet34-TE network with ResNet34 as the Backbone and ViT network and implements an image classification task on the ImageNet-1k dataset. Compared with the ResNet34 model, the accuracy of Top1 and Top5 image classification is improved by 2.1 points and 1.2 points respectively. VGG16-TE and ResNet34-TE parameters decrease by 68M and 61.5M compared with that of the ViT-Base model.