Robust palmprint verification using sparse representation of binarized statistical features: a comprehensive study

Ramachandra Raghavendra, C. Busch
{"title":"Robust palmprint verification using sparse representation of binarized statistical features: a comprehensive study","authors":"Ramachandra Raghavendra, C. Busch","doi":"10.1145/2600918.2600929","DOIUrl":null,"url":null,"abstract":"This paper proposes a new scheme for robust palmprint verification using sparse representation of Binarized Statistical Image Features (BSIF). Since palmprint comprises of rich set of features including principal lines, ridges and wrinkles, the use of appropriate texture descriptor is expected to accurately capture these information. To this extent, we explore the BSIF texture descriptor which codes each pixel of the given palmprint image in terms of binary strings based on the filter response. The BSIF learns the filter basis from the natural images by exploring statistical independence. We then use the Sparse Representation Classifier (SRC) on these BSIF features to perform the subject verification. Extensive experiments are carried out on three different large scale publically available palmprint databases. We then present an extensive analysis by comparing the proposed scheme with five different contemporary state-of-the-art schemes that reveals the outstanding performance.","PeriodicalId":243756,"journal":{"name":"Information Hiding and Multimedia Security Workshop","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Hiding and Multimedia Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600918.2600929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper proposes a new scheme for robust palmprint verification using sparse representation of Binarized Statistical Image Features (BSIF). Since palmprint comprises of rich set of features including principal lines, ridges and wrinkles, the use of appropriate texture descriptor is expected to accurately capture these information. To this extent, we explore the BSIF texture descriptor which codes each pixel of the given palmprint image in terms of binary strings based on the filter response. The BSIF learns the filter basis from the natural images by exploring statistical independence. We then use the Sparse Representation Classifier (SRC) on these BSIF features to perform the subject verification. Extensive experiments are carried out on three different large scale publically available palmprint databases. We then present an extensive analysis by comparing the proposed scheme with five different contemporary state-of-the-art schemes that reveals the outstanding performance.
利用二值化统计特征的稀疏表示鲁棒掌纹验证:一项综合研究
本文提出了一种基于二值化统计图像特征(BSIF)稀疏表示的鲁棒掌纹验证方案。由于掌纹包含了丰富的特征集,包括主纹、脊纹和皱纹,因此使用合适的纹理描述符可以准确地捕获这些信息。为此,我们探索了基于滤波器响应的二进制字符串对给定掌纹图像的每个像素进行编码的BSIF纹理描述符。BSIF通过探索统计独立性从自然图像中学习滤波器基。然后,我们在这些BSIF特征上使用稀疏表示分类器(SRC)来执行主题验证。在三个不同的大型公开掌纹数据库上进行了广泛的实验。然后,我们通过将提议的方案与五种不同的当代最先进的方案进行比较,提出了一个广泛的分析,揭示了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信