Interpolation of liquids' height inside a mesh

Durand de Gevigney Valentin
{"title":"Interpolation of liquids' height inside a mesh","authors":"Durand de Gevigney Valentin","doi":"10.1145/3110292.3110315","DOIUrl":null,"url":null,"abstract":"This short paper details an approach to simulate liquids inside a mesh with an approximate but fast method. Only height is computed, and is used for rendering. One of the benefits of our approach is that height is obtained in a continuous way, by interpolating accurately pre-computed heights. The algorithm presented here uses a two-dimensional Lagrange interpolation. Variables used for interpolation are: desired volume and rotation of the object. Interpolation is improved by using zeros of Chebyshev polynomials, to avoid Runge's phenomenon. Interpolating pre-computed data generates a 2D formula which, at runtime, costs negligible computational time. Results show a very small difference between interpolated height and pre-computed height (mean error <0.1%).","PeriodicalId":360498,"journal":{"name":"Proceedings of the Virtual Reality International Conference - Laval Virtual 2017","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Virtual Reality International Conference - Laval Virtual 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110292.3110315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This short paper details an approach to simulate liquids inside a mesh with an approximate but fast method. Only height is computed, and is used for rendering. One of the benefits of our approach is that height is obtained in a continuous way, by interpolating accurately pre-computed heights. The algorithm presented here uses a two-dimensional Lagrange interpolation. Variables used for interpolation are: desired volume and rotation of the object. Interpolation is improved by using zeros of Chebyshev polynomials, to avoid Runge's phenomenon. Interpolating pre-computed data generates a 2D formula which, at runtime, costs negligible computational time. Results show a very small difference between interpolated height and pre-computed height (mean error <0.1%).
网格内液体高度的插值
本文详细介绍了一种近似而快速的模拟网格内液体的方法。只计算高度,并用于渲染。我们的方法的一个好处是,高度是通过精确地插值预先计算的高度,以连续的方式获得的。本文提出的算法使用二维拉格朗日插值。用于插值的变量是:所需的体积和对象的旋转。利用切比雪夫多项式的零点改进了插值,避免了龙格现象。插入预先计算的数据会生成一个2D公式,在运行时,计算时间可以忽略不计。结果表明,插值高度与预计算高度之间的差异非常小(平均误差<0.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信