Silvio E. Ribeiro, R. Menezes, Ariel L. C. Portela, T. P. Araujo, Rafael L. Gomes
{"title":"Aplicando Redes Neurais e Análise Temporal para Predição Adaptativa de Desempenho de Rede","authors":"Silvio E. Ribeiro, R. Menezes, Ariel L. C. Portela, T. P. Araujo, Rafael L. Gomes","doi":"10.5753/sbrc.2023.508","DOIUrl":null,"url":null,"abstract":"Serviços de monitoramento de rede são executados por diversas empresas e Provedores de Internet (ISPs), que fornecem resultados de testes regulares de desempenho, tais como vazão, perda, atraso, dentre outros. Estas medições auxiliam a conhecer o comportamento da rede, bem como obter informações para um planejamento estratégico. Contudo, estas ferramentas ainda precisam evoluir a fim de englobar atividades mais complexas, tal como predição do desempenho, principalmente dentro do contexto atual de demanda elástica. Dentro deste contexto, este artigo apresenta um modelo adaptativo de predição de desempenho de rede baseado em Redes Neurais e Análise de Séries Temporais, habilitando a identificação do desempenho futuro da rede em determinados períodos, de acordo com medições de rede passadas. Os experimentos realizados, usando dados reais da Rede Nacional de Ensino e Pesquisa (RNP), mostram que o modelo proposto consegue atingir altos níveis de acurácia na predição, bem como supera o uso dos modelos de predição existentes.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Serviços de monitoramento de rede são executados por diversas empresas e Provedores de Internet (ISPs), que fornecem resultados de testes regulares de desempenho, tais como vazão, perda, atraso, dentre outros. Estas medições auxiliam a conhecer o comportamento da rede, bem como obter informações para um planejamento estratégico. Contudo, estas ferramentas ainda precisam evoluir a fim de englobar atividades mais complexas, tal como predição do desempenho, principalmente dentro do contexto atual de demanda elástica. Dentro deste contexto, este artigo apresenta um modelo adaptativo de predição de desempenho de rede baseado em Redes Neurais e Análise de Séries Temporais, habilitando a identificação do desempenho futuro da rede em determinados períodos, de acordo com medições de rede passadas. Os experimentos realizados, usando dados reais da Rede Nacional de Ensino e Pesquisa (RNP), mostram que o modelo proposto consegue atingir altos níveis de acurácia na predição, bem como supera o uso dos modelos de predição existentes.