The Topology of the Configuration Space of a Mathematical Model for Cycloalkenes

Y. Kamiyama
{"title":"The Topology of the Configuration Space of a Mathematical Model for Cycloalkenes","authors":"Y. Kamiyama","doi":"10.5772/intechopen.100723","DOIUrl":null,"url":null,"abstract":"As a mathematical model for cycloalkenes, we consider equilateral polygons whose interior angles are the same except for those of the both ends of the specified edge. We study the configuration space of such polygons. It is known that for some case, the space is homeomorphic to a sphere. The purpose of this chapter is threefold: First, using the h-cobordism theorem, we prove that the above homeomorphism is in fact a diffeomorphism. Second, we study the best possible condition for the space to be a sphere. At present, only a sphere appears as a topological type of the space. Then our third purpose is to show the case when a closed surface of positive genus appears as a topological type.","PeriodicalId":206412,"journal":{"name":"Advanced Topics of Topology [Working Title]","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Topics of Topology [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a mathematical model for cycloalkenes, we consider equilateral polygons whose interior angles are the same except for those of the both ends of the specified edge. We study the configuration space of such polygons. It is known that for some case, the space is homeomorphic to a sphere. The purpose of this chapter is threefold: First, using the h-cobordism theorem, we prove that the above homeomorphism is in fact a diffeomorphism. Second, we study the best possible condition for the space to be a sphere. At present, only a sphere appears as a topological type of the space. Then our third purpose is to show the case when a closed surface of positive genus appears as a topological type.
环烯烃数学模型构型空间的拓扑结构
作为环烯烃的数学模型,我们考虑了除指定边两端的内角外内角相等的等边多边形。我们研究了这类多边形的位形空间。已知在某些情况下,空间同胚于球。本章的目的有三:首先,利用h-共模定理,证明了上述同胚实际上是一个微分同胚。其次,我们研究了空间为球面的最佳可能条件。目前,只有球面作为空间的拓扑类型出现。然后我们的第三个目的是展示一个正属的闭曲面作为拓扑类型出现的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信