{"title":"The Topology of the Configuration Space of a Mathematical Model for Cycloalkenes","authors":"Y. Kamiyama","doi":"10.5772/intechopen.100723","DOIUrl":null,"url":null,"abstract":"As a mathematical model for cycloalkenes, we consider equilateral polygons whose interior angles are the same except for those of the both ends of the specified edge. We study the configuration space of such polygons. It is known that for some case, the space is homeomorphic to a sphere. The purpose of this chapter is threefold: First, using the h-cobordism theorem, we prove that the above homeomorphism is in fact a diffeomorphism. Second, we study the best possible condition for the space to be a sphere. At present, only a sphere appears as a topological type of the space. Then our third purpose is to show the case when a closed surface of positive genus appears as a topological type.","PeriodicalId":206412,"journal":{"name":"Advanced Topics of Topology [Working Title]","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Topics of Topology [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As a mathematical model for cycloalkenes, we consider equilateral polygons whose interior angles are the same except for those of the both ends of the specified edge. We study the configuration space of such polygons. It is known that for some case, the space is homeomorphic to a sphere. The purpose of this chapter is threefold: First, using the h-cobordism theorem, we prove that the above homeomorphism is in fact a diffeomorphism. Second, we study the best possible condition for the space to be a sphere. At present, only a sphere appears as a topological type of the space. Then our third purpose is to show the case when a closed surface of positive genus appears as a topological type.