Highly Doped Semiconductor Plasmonic Nanoantenna for Biomedical Sensing

Ahmed S. Abdeen, A. M. Attyia, D. Khalil
{"title":"Highly Doped Semiconductor Plasmonic Nanoantenna for Biomedical Sensing","authors":"Ahmed S. Abdeen, A. M. Attyia, D. Khalil","doi":"10.1109/OMN.2019.8925062","DOIUrl":null,"url":null,"abstract":"In this paper, we present the analysis and design of an efficient analyte sensor based on Surface Plasmon Resonance. These analytes can be used as biomarkers to detect molecules that lie in mid-infrared. This sensor is based on an array of plasmonic nanoantennas of highly doped Germanium on Silicon Substrate. The proposed plasmonic nanoantenna is CMOS compatible and designed to detect and amplify the molecular absorption lines of a condensed phase analyte called Polydimethylsiloxane. Furthermore, the proposed design demonstrate field enhancement in order up to 20 times of the input signal which leads to detect the fingerprint of different substances with high efficiency and paves the way to integrate for Lab-on-chip applications.","PeriodicalId":353010,"journal":{"name":"2019 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2019.8925062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the analysis and design of an efficient analyte sensor based on Surface Plasmon Resonance. These analytes can be used as biomarkers to detect molecules that lie in mid-infrared. This sensor is based on an array of plasmonic nanoantennas of highly doped Germanium on Silicon Substrate. The proposed plasmonic nanoantenna is CMOS compatible and designed to detect and amplify the molecular absorption lines of a condensed phase analyte called Polydimethylsiloxane. Furthermore, the proposed design demonstrate field enhancement in order up to 20 times of the input signal which leads to detect the fingerprint of different substances with high efficiency and paves the way to integrate for Lab-on-chip applications.
用于生物医学传感的高掺杂半导体等离子体纳米天线
本文介绍了一种基于表面等离子体共振的高效分析物传感器的分析与设计。这些分析物可用作生物标记物来检测中红外分子。该传感器基于硅衬底上高掺杂锗的等离子体纳米天线阵列。该等离子体纳米天线与CMOS兼容,用于检测和放大聚二甲基硅氧烷凝聚相分析物的分子吸收谱线。此外,所提出的设计展示了高达20倍输入信号的场增强,从而高效率地检测不同物质的指纹,并为芯片实验室应用的集成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信