A factor graph framework for semantic indexing and retrieval in video

M. Naphade, I. Kozintsev, T. Huang, K. Ramchandran
{"title":"A factor graph framework for semantic indexing and retrieval in video","authors":"M. Naphade, I. Kozintsev, T. Huang, K. Ramchandran","doi":"10.1109/IVL.2000.853836","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel framework for semantic indexing and retrieval in digital video. The components of the framework are probabilistic multimedia objects (multijects) and a network of such objects (multinets). The main contribution of this paper is a novel application of a factor graph framework to model the interactions in a network of multijects (multinet) at a semantic level. Factor graphs are statistical graphical models that provide an efficient framework for exact and approximate inference via the sum-product algorithm. Incorporating the statistical interactions between the concepts using factor graphs enhances the detection probability of individual multijects and provides a unified framework for integrating multiple modalities and supports inference of unobservable concepts based on their relation with observable concepts. Our experiments reveal significant performance improvement using the inference on the factor graph models.","PeriodicalId":333664,"journal":{"name":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVL.2000.853836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

This paper proposes a novel framework for semantic indexing and retrieval in digital video. The components of the framework are probabilistic multimedia objects (multijects) and a network of such objects (multinets). The main contribution of this paper is a novel application of a factor graph framework to model the interactions in a network of multijects (multinet) at a semantic level. Factor graphs are statistical graphical models that provide an efficient framework for exact and approximate inference via the sum-product algorithm. Incorporating the statistical interactions between the concepts using factor graphs enhances the detection probability of individual multijects and provides a unified framework for integrating multiple modalities and supports inference of unobservable concepts based on their relation with observable concepts. Our experiments reveal significant performance improvement using the inference on the factor graph models.
视频语义索引与检索的因子图框架
本文提出了一种新的数字视频语义索引与检索框架。该框架的组件是概率多媒体对象(multijects)和这种对象(multiinets)的网络。本文的主要贡献是一个新的应用因子图框架,在语义层面上对多对象网络(多网络)中的交互建模。因子图是统计图形模型,它通过和积算法为精确和近似推理提供了一个有效的框架。利用因子图将概念之间的统计交互作用结合起来,提高了单个多对象的检测概率,为整合多个模态提供了统一的框架,并支持基于不可观测概念与可观测概念之间关系的不可观测概念推理。我们的实验表明,使用因子图模型的推理可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信