Automated estimation of human emotion from EEG using statistical features and SVM

Yuliyan Velchev, S. Radeva, Strahil Sokolov, D. Radev
{"title":"Automated estimation of human emotion from EEG using statistical features and SVM","authors":"Yuliyan Velchev, S. Radeva, Strahil Sokolov, D. Radev","doi":"10.1109/DMIAF.2016.7574899","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for automated estimation of human emotions from electroencephalogram data. The used features are principally the Hjorth parameters calculated for theta, alpha, beta and gamma bands taken from certain channels. The classification stage is support vector machine. Since the human emotions are modelled as combinations from physiological elements such as arousal, valence, dominance, liking, etc., these quantities are the classifier's outputs. The best achieved correct classification performance is about 80%.","PeriodicalId":404025,"journal":{"name":"2016 Digital Media Industry & Academic Forum (DMIAF)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Digital Media Industry & Academic Forum (DMIAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMIAF.2016.7574899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents an approach for automated estimation of human emotions from electroencephalogram data. The used features are principally the Hjorth parameters calculated for theta, alpha, beta and gamma bands taken from certain channels. The classification stage is support vector machine. Since the human emotions are modelled as combinations from physiological elements such as arousal, valence, dominance, liking, etc., these quantities are the classifier's outputs. The best achieved correct classification performance is about 80%.
基于统计特征和支持向量机的脑电情感自动估计
本文提出了一种从脑电图数据中自动估计人类情绪的方法。所使用的特征主要是为从某些通道获取的theta, alpha, beta和gamma波段计算的Hjorth参数。分类阶段是支持向量机。由于人类的情绪是由生理因素(如唤醒、价、支配、喜欢等)组合而成的,所以这些数量就是分类器的输出。达到的最佳正确分类性能约为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信